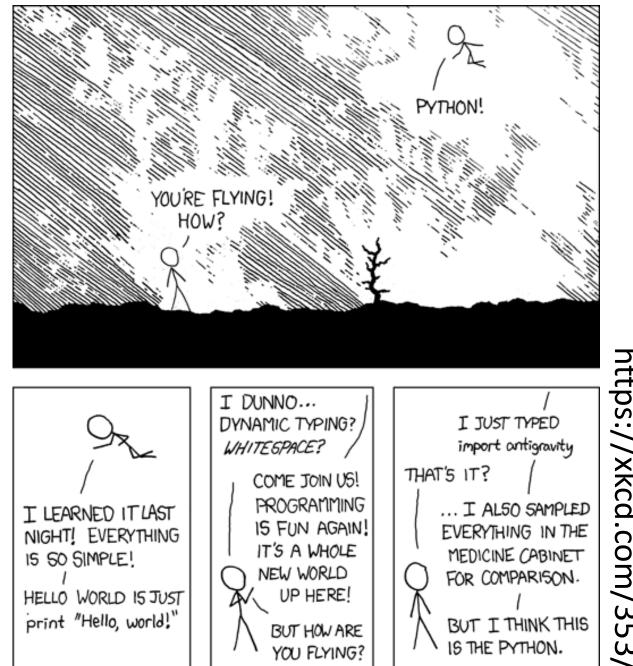
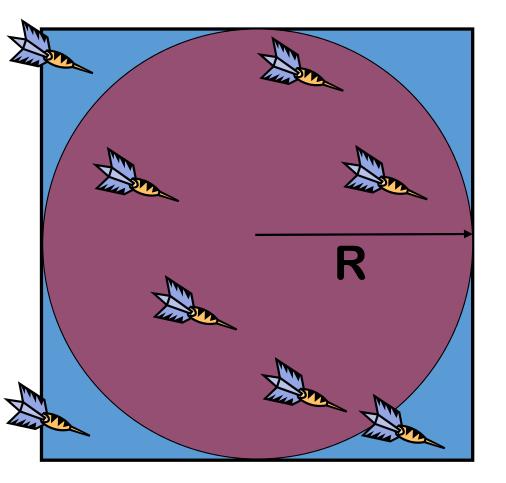
ICGE Module 2 Session 3—Python!



https://xkcd.com/353

Monte Carlo simulations use random numbers to statistically sample different outcomes

A simple use of Monte Carlo simulation is to calculate the relative area of a region:



What's the ratio of the area of the circle to the area of the square?

 $\frac{\pi R^2}{(2R)^2} = \frac{\pi}{4} = \frac{\text{Darts in circle}}{\text{Darts in square}}$

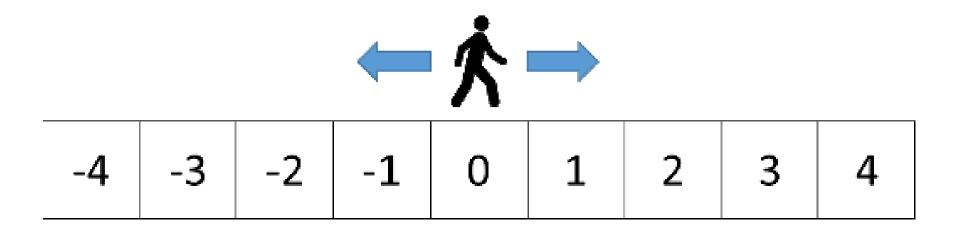
 $\pi = 4 \times \frac{\text{Darts in circle}}{\text{Darts in square}}$

Here's a simple Python program to simulate this process using virtual darts

```
#!/usr/bin/python
import random
import math
inside=0
trials=1000
for i in range(trials):
    x=random.random()
                            Indentation matters!
    y=random.random()
    if (x*x+y*y)<1.0:
        inside+=1
pi=4.*float(inside)/float(trials)
print "N=%d Error=%8.5f "%(trials,pi-math.pi)
```

Enter into an idle editing window and then save as "pi.py"

Many problems in physics, chemistry and biology essentially boil down to "random walks"



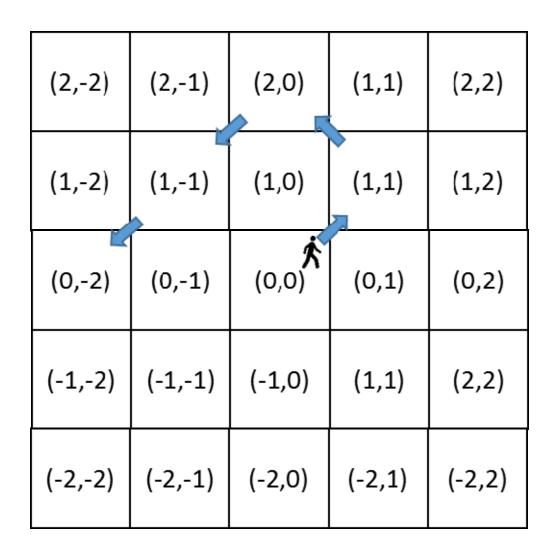
Simplest question to ask—does the walker ever get back home?

Python program for 1-D random walk

```
from _______ import division
from random import choice
trials=1000
steps=1000
gothome=0
for i in range(trials):
    point=0
    for step in range(steps):
        point+=choice((-1,1))
        if point==0:
            gothome+=1
            break
print "Fraction that got home=%f" % (gothome/trials)
```

Save this as "rwalk1d.py" and run for different numbers of steps

The problem gets more interesting if the walker moves in 2 or more dimensions



Note that if we randomly change both x & y coordinates by -1 or +1, the walker moves diagonally like a checkers piece.

Python program for arbitrary-D random walk making diagonal moves at every step

```
from ______ import division
from random import choice
dim=3
trials=1000
steps=1000
gothome=0
for i in range(trials):
    point=[0]*dim
    for step in range(steps):
        for j in range(dim):
            point[j]+=choice((-1,1))
        if point.count(0)==dim:
            gothome+=1
            break
print "Fract that got home=%f in %d dims" % (gothome/trials,dim)
```

Save this as "rwalknd.py" and run for different dimensions

For what #'s of dimensions does the walker make it home?

Exact results for an infinite number of steps moving in only one dimension at a time

Prob(get home)
1.000
1.000
0.341
0.193
0.135
0.105
0.086
0.073

(2,-2)	(2,-1)	(2,0)	(1,1)	(2,2)
(1,-2)	(1,-1)	(1,0)	(1,1)	(1,2)
(0,-2)	(0,-1)	於 (0,0)	(0,1)	(0,2)
(-1,-2)	(-1,-1)	(-1,0)	(1,1)	2,2)
(-2,-2)	(-2,-1)	(-2,0)	-2,1)	(-2,2)

Research questions:

- 1. How well does rwalknd.py agree with the exact results?
- 2. Do your results match better if you modify the program to step in only one dimension at a time?

Exact results from http://mathworld.wolfram.com/PolyasRandomWalkConstants.html