ICGE Module 2 Session 4

Scientific application of Python: Random Walks

o
©
o
L
o L 2

Left:

https://commons.wikimedia.org/wiki/File:Random_walk_25000.gif

Right:

http://www.mit.edu/~kardar/teaching/projects/chemotaxis(AndreaSchmidt)/finding_food.htm

Many problems in physics, chemistry and biology
essentially boil down to "random walks"”

=R =

4| -3/-2-1]0 |1 2 3| 4

Simplest question to ask—does the
walker ever get back home?

Python program for 1-D random walk

from future_ 1mport division
from random import choice
trials=1000
steps=1000
gothome=0
for 1 1In range(trials):
point=0
for step In range(steps):
point+=choice((-1,1))
1T point==0:
gothome+=1
break
print "Fraction that got home=%f" % (gothome/trials)

Save this as "rwalkld.py" and run for different numbers of steps

The problem gets more interesting if the walker
moves ih 2 or more dimensions

(2,-2) | (2,-1) | (2,0) (1,1) (2,2)
N
(1,-2) | (1,-1) | (1,0) (1,1) (1,2)
Jy L
= ﬁ(/
(0,-2) | (0,-1) (0,0) (0,1) (0,2)
(-1,-2) | (-1,-1) | (-1,0) | (1,1) (2,2)
(-2,-2) | (-2,-1) | (-2,0) | (-2,2) | (-2,2)

Note that if we randomly change both x & y coordinates by -1 or
+1, the walker moves diagonally like a checkers piece.

Python program for arbitrary-D random walk
making diagonal moves at every step

from _ future _ 1mport division
from random import choice
dim=3
trials=1000
steps=1000
gothome=0
for 1 1In range(trials):
point=[0]*dim
for step 1In range(steps):
for jJ 1n range(dim):
point[j]+=choice((-1,1))
iIT point.count(0)==dim:
gothome+=1
break
print "Fract that got home=%f 1n %d dims"™ % (gothome/trials,dim)

Save this as "rwalknd.py"” and run for different dimensions

For what #'s of dimensions does the walker make it home?

Exact results for an infinite number of steps

moving in only one dimension at a time

Research questions:

Prob(get home

1.000
1.000
0.341
0.193
0.135
0.105
0.086
0.073

(2,-2) (2,-1) (2,0) (1,1) (2,2)
-
(1,-2) (1,-1) (1,0) (1,1) (1,2)
"8 ﬁ."
0-2) | (0-1) | (0,00 | (0,1) | (0,2)
(-1,-2) | (-1,-1) | (-1,0) (1',1) m)2,2)
(-2-2) | (-2-1) | (-2,0m%-2,1) | (-2,2)

1. How well does rwalknd.py agree with the exact results?

2. Do your results match better if you modify the program
to step in only one dimension at a time?

Exact results from http://mathworld.wolfram.com/PolyasRandomWalkConstants.html

Python program for arbitrary-D random moving
in just one dimension each step

from _ future _ 1mport division
from random import choice
dim=3
trials=1000
steps=1000
gothome=0
for 1 1In range(trials):
point=[0]*dim
for step 1In range(steps):
movedim=choice(range(dim))
point[movedim]+=choice((-1,1))
iIT point.count(0)==dim:
gothome+=1
break
print "Fract that got home=%f In %d dims"™ % (gothome/trials,dim)

Save this as "rwalknd2.py"” and run for different dimensions

Do these results agree better with pure theory?

Another important type of random walk
simulation is diffusion-limited aggregation (DLA)

DLA “crystal” in copper sulfate solution

We can simulate DLA with a random
2-D walk where the particle stops if
it hits an existing particle

Particles move randomly on grid
T—-l- e

N~ !

ﬂ

] |
LIl
H

‘L...T Particles stop if they move adjacent
to another stopped particle

https://en.wikipedia.org/wiki/Diffusion-limited_aggregation

DLA Python program using very simple graphics
based on the Python Image Library (PIL)

from random import choice . . .
from drawgridlib import drawgrid, savegrid Simulation gl"ld

npart=200 #Number of particles to aggregate
side=75 #Should be an odd number
steps = [(1,0),(-1,0),(0,1),(0,-1)]
grid=[[0 for x in range(side)] for y in range(side)] (::>
grid[side/2][side/2]=1
for ipart in range(npart):
Start particle at origin .
x,y = 0,0
perform the random walk until particle aggregates
while 1: ‘==
grid[x][y]=0 #Remove particle from current spot t
Randomly move particle §§§
sx,sy = choice(steps)
X += SX
y t= sy
Enforce periodic boundaries
IT X < 0: x=side-1 C)UTPUT
iITy <0: y=side-1
IT x==si1de: x=0
iIT y==side: y=0
grid[x][y]=1 #Put particle 1n new location
Stop 1T you are next to a particle
1T (grid[(xtD)%side][y]l+grid[x][(y+1)%side]+
grid[(xtside-1)%side][y]+grid[x][(y+side-1)%side])>0:
break
drawgrid(grid,side) #Displays image to screen
#savegrid(grid,side) #Stores image in dla.jpg

