
ICGE Module 4 Session 1
Object-oriented programming in Python

What will your program need to include?
• Variables to store the properties of each component (cards, frogs, etc.)
• Logic and math to change these variables (deal card, move frog, etc.)
• Steps to initialize and print out the properties of each component

Imagine you want to simulate something:

What’s the best way to organize these different pieces?



“Object-oriented” programming organizes your 
program around the natural “objects” involved



“OO” programming is an intuitive & fun approach 
to designing many types of simulation programs

• Simplifies programming by hiding the details of each component of the program
• Improved reliability since each class can be independently debugged
• Improved code reuse and sharing since you only need to remember the class 

“interface” and don’t need to know the details of how the code is implemented

Promised advantages of OO programming



Let’s try out two simple classes that implement 
a deck of playing cards and an individual card

Deck object Card object
Create deck __init__() Create card __init__()
Shuffle deck shuffle() What type of card? type()
Look at whole deck printdeck() What suit? suit()
Deal a card dealcard() What is the card value? 

(depends on card game)
value()

How many cards left? cardsleft() Look at card printcard()



Start idle, then open and run the file cards.py

adeck=deck()
adeck.shuffle()
adeck.printdeck()
for i in range(15):
acard=adeck.dealcard()
print "acard:",acard.printcard()

print "# left:",adeck.cardsleft()
adeck.shuffle()
adeck.printdeck()
bdeck=deck()
bdeck.printdeck()

Create a deck object and try some of its functions:



Let’s use this card “class” to build a simple card 
game and determine players’ odds of winning
Rules: 1. Player A gets 2 cards & Player B gets 1 card

2. Player A wins the hand if either card has a 
greater value than Player B’s card

3. Play though entire deck and tally hands won

Hand 2:

Hand 1:
Player A Player B

A wins

B wins



from __future__ import division
from cards import *
adeck=deck()
adeck.shuffle()
ascore=0
bscore=0
while adeck.cardsleft()>2:

acard1=adeck.dealcard()
acard2=adeck.dealcard()
bcard=adeck.dealcard()
if acard1.value()>bcard.value() or acard2.value()>bcard.value():

ascore+=1
else:

bscore+=1
if ascore > bscore:

print("Player A wins")
else:

print("Player B wins")

Open a new window and enter the following code
Save the file with the name game.py in the same 
directory with the file cards.py



from __future__ import division
from cards import *
ntrials=10000
awins=0
for i in range(ntrials):

adeck=deck()
adeck.shuffle()
ascore=0
bscore=0
while adeck.cardsleft()>2:

acard1=adeck.dealcard()
acard2=adeck.dealcard()
bcard=adeck.dealcard()
if acard1.value()>bcard.value() or acard2.value()>bcard.value():

ascore+=1
else:

bscore+=1
if ascore > bscore:

awins+=1
print("Player A win percentage=",awins/ntrials)

Modification of program to run 10000 games and 
compute the fraction of time Player A wins
Program downloaded from CatCourses:  gameMC.py



class deck:
def __init__(self):

self.deck=[]
suits=['S','C','H','D']
values={'A':1,'2':2,'3':3,'4':4,'5':5,'6':6,'7':7,'8':8,'9':

9,'10':10,'J':10,'Q':10,'K':10} 
types=['A','2','3','4','5','6','7','8','9','10','J','Q','K']

The card values are set in the deck class and 
can be changed by editing the numerical values

Player B wins when cards are equal, so giving more cards equal 
values will help this player.   Edit the cards.py file and make 
this change (save your changes before rerunning gameMC.py)
values={'A':1,'2':2,'3':3,'4':4,'5':5,'6':6,'7':7,'8':9,'9':9
,'10':10,'J':10,'Q':10,'K':10} 

The most balanced version of the program I could find gave 
Player A a 50.5% chance of winning—can you do better?

Edit cards.py and look for following lines:



Blackjack is a slightly more complex game where 
winning depends on the point value each hand 
Goal:  Get a set of cards totaling as close as 
possible to 21, without going over 21
Card values:

2, 3, 4, 5, 6, 7, 8, 10: Value of number
J, Q, K:  Count as 10
A: Count as 1 or 11



Rules of blackjack (simplified)
Players:  1 player and 1 dealer

• Deal two cards to player & dealer with one of the 
dealer’s cards face up

• Player goes first, requesting as many cards as he 
wants (“hits”)

• If player goes over 21, he “busts” and dealer wins
• If player doesn’t bust, dealer takes cards up to a 

cutoff of 17 or a bust
• Player & dealer compare scores; dealer wins in a tie

Rules:



Two sample hands of Blackjack

Player Busted ! Player wins !

DEALER

PLAYER



You can change the player’s strategy and 
use Monte Carlo to test effectiveness

• Player’s cutoff to take new card (recalling 
that dealer must “hold” at 17)

Things to change in strategy:

• How to use information 
about what cards the dealer 
is showing—Typically the 
higher the card the dealer is 
showing, more likely you will 
benefit by taking another 
card

ht
tp

://
w

w
w

.h
ito

rs
ta

nd
.n

et
/s

tr
at

eg
y.

ph
p



Program blackjack.py on CatCourses
is a Monte Carlo simulation of the game

Output:

The program plays 10000 games of blackjack 
following the specified player strategy

The player strategy can be modified by editing 
the holdlimit variable in the playerclass



You specify the player’s strategy in terms 
of the hold value under different conditions

Dealer’s 
exposed card

Player’s hold limit for 
that showing card

Code:  blackjack.py

Example:  hold limit of 17 in all cases

Example:  variable hold limit


	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15

