
ICGE Module 4 Session 2
Object-oriented programming in Python Redux

Situations where OO design may not be ideal:
• Performance is a top priority (relevant in OO C++)
• Many developers will be working on the program
• Few obvious “objects” in the task to be programmed

Topics for today:
• Writing OO classes—a point class
• Other OO Examples:

• Ising model
• Iterated prisoners’ dilemma
• Sudoku

When possible, you should pick the style you like best

Many simulations of physical processes involve
vector operations in 3 dimensional space

In idle load and run: point3d.py
then try these commands:

For points (and many useful data types) there are good standard libraries:

NumPy: N-dimensional array “ndarray”
SciPy: More advanced linear algebra on ndarrays

A 3D point class can simplify codes involving spatial coordinates

a=point3d(2,3,5)

a.display()

a.sqmag()

b=point3d(5,6,7)

c=a+b

d=5*c

d.display()

d.dist(b)

class point:
def __init__(self, dim, data):

self.dim=dim
self.data=[]
for i in range(dim):

self.data.append(float(data[i]))
def display(self):

for i in self.data:
print i,

print
def scale(self, x):

for i in range(self.dim):
self.data[i]*=x

def dot(self, a):
sum=0
for i in range(self.dim):

sum+=self.data[i]*a.data[i]
return sum

Let’s create a simple arbitrary dimensional point
class with just a few functions (& no safety net)
Open window and enter the following class and save as point.R

This is the
function that
“constructs” new
point objects:
p3=point(2,[3,2])

self is the prefix
for data stored in
an object

Test your multidimensional point class by writing
a short program using the class functions

from point import *
p1=point(4, [1, 4, 5, 2])
p1.display()
p1.scale(3)
p1.display()
p2=point(4, [5, 1, 2, 3])
print "p1 dot p2=", p1.dot(p2)
p3=point(2, [3,2])
p3.display()
print "p3 dot p2=", p3.dot(p2)

float dot=0.;
for (int i=0; i<dim; i++) {

dot+=p1[i]*p2[i];
}

Be sure to save this in the same folder with point.py

Same operation in a procedural
code would require a few lines
but may run much faster:

This is an “unsafe” class since it will try to execute bad operations
(like the dot product between vectors of different length)

r1 = _mm_mul_ps(p1, p2);
r2 = _mm_hadd_ps(r1, r1);
r3 = _mm_hadd_ps(r2, r2);
_mm_store_ss(&dot, r3);

Or much, much faster*

*SSE calls for dim=4

“Ising models” are very simple spin lattices that
undergo fairly realistic “phase transitions”

6X6 Ising model

Function Function name and args, example of use
Create an ising model with a specified
temperature, n (spins on one side)

ising(temp, n)
ising1=ising(2.4, 10)

Print out the ising system to the screen printsys()
ising1.printsys()

Run a single trial (flip 1 spin) trial()
ising1.trial()

Run multiple trials (flip m spins) trials(m)
ising1.trials(100000)

Set the system temperature to a new value changeTemp(newtemp)
ising1.changeTemp(3.4)

Randomize the spins (equal prob up or down) randomize()
ising1.randomize()

Reset sums for calculation energy and
magnetization statistics

resetprops()
ising1.resetprops()

Calculate energy and magnetization for current
state of system and add to running sums

addprops()
ising1.addprops()

Calculate and print out system properties calcprops()
ising1.calcprops()

Functions in class library ising_class.py for
running & analyzing 2-dimensional Ising models

from ising_class import *
ising1=ising(2.3, 20)
ising1.printsys()
ising1.resetprops()
ising1.randomize()
ising1.trials(5000)
ising1.resetprops()
for i in range(50000):

ising1.trial()
ising1.addprops()

ising1.calcprops()
ising1.printsys()

The class library makes it easy to assemble
Ising simulations where all details are hidden
Load into idle the program ising1.py

For a program that scans temperature to find
melting temperature, see posted ising2.py

2.3000 -3.1472 0.0021 0.0175 0.0012

𝑬𝑬 𝝈𝝈𝑬𝑬 𝑴𝑴 𝝈𝝈𝑴𝑴𝑻𝑻

Numbers output by calcprops()

These diverge at the
“melting” temperature

The Iterated Prisoner’s Dilemma (IPD) is a simple
model for repeated business or social interactions

Player 1 Player 2 Player 1
Total

Player 2
Total

Cooperate Cooperate 2 2

Cooperate Cooperate 4 4

Cooperate Cooperate 6 6

Cooperate Defect 6 9

Player 1 Player 2 Player 1
Total

Player 2
Total

Cooperate Defect 0 3

Defect Defect 1 4

Defect Defect 2 5

Defect Defect 3 6

“Friendly” Transactions “Hostile” Transactions

Multiple players repeatedly have pairwise transactions,
deciding to “Cooperate” or “Defect” each time:

Name Strategy

Always Cooperate Always cooperate

Always Defect Always defect

Tit for Tat Cooperate first, and then do what
opponent did last time

Suspicious Tit for Tat Defect first, and then do what
opponent did last time

Coin flip Defect or cooperate with equal
probability

Biased Random Defect or cooperate with prob.
biased by opponent’s history

Grudger Cooperate until opponent defects,
then always defect

In the early 1980’s Robert Axelrod at Michigan
ran a series of IPD “tournaments”

Best
deterministic
strategy in
Axelrod’s study

Examples of some simple IPD strategies

The IPD can be put in a simulation of Darwinian
evolution where species fitness = average score

Generation= 8 Pop Score New Pop
defect: 0 0.0000 0

cooperate: 11 21.4295 11
tit_for_tat: 14 27.4481 14

coin_flip: 3 5.0558 2
biased_random: 17 33.1816 18

susp_tit_for_tat: 2 3.1673 1
grudger: 18 35.4279 19

Load & run: ipd.py
uses ipd_class.py

The evolutionary IPD simulation program ipd.py
allows setting the initial populations

Strategies available
strats=[defect,cooperate,tit_for_tat,coin_flip,

biased_random,susp_tit_for_tat,grudger]

Set list for the number of each strategy
Nactor_list=[5, 15, 20, 10, 10, 10, 10]

You set the initial composition of the environment on these lines:

You can also
add new
strategies
by adding
new player
classes

class waffler:
def __init__(self,Nactors,myid):

self.Nactors=Nactors
self.myid=myid
self.name="waffler"
self.responses=["Cooperate","Defect"]
self.next=1

def response(self, other):
self.next=(self.next+1)%2
return self.responses[self.next]

def inform(self, other, other_response):
return

s=sudoku()
s.makepuzzle(36)
s.display()
s.solve()
s.solved()
s.generate()

Example of OO encapsulation: Sudoku--a simple,
but for many very addictive, numerical puzzle

Create an empty 9x9 Sudoku grid

Fill in 36 number clues (or any # < 81)

Print out current Sudoku grid

Try to solve the puzzle (without using any guesses)

Is the puzzle completely solved?

Generate a completely solved Sudoku puzzle

Load and run sudoku_class.py

Goal: Fill in digits 1-9 so
that there are no
repeated digits in any row,
column or 3x3 sub-block

Program to calc. solve rate vs # clues: sudoku.py

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12

