Name: Bash CheatSheet

# #

# #

# A little overlook of the Bash basics #

# #

# Usage: A Helpful Guide #

# #

# Author: J. Le Coupanec #

# Date: 2014/11/04 #

# Edited: 2015/8/18 - Michael Stobb #

HHHHHHHEHE A

# 0. Shortcuts.

CTRL+A # move to beginning of line

CTRL+B # moves backward one character

CTRL+C # halts the current command

CTRL+D # deletes one character backward or logs out of current session

CTRL+E # moves to end of line

CTRL+F # moves forward one character

CTRL+G # aborts the current editing command and ring the terminal bell

CTRL+J # same as RETURN

CTRL+K # deletes (kill) forward to end of line

CTRL+L # clears screen and redisplay the line

CTRL+M # same as RETURN

CTRL+N # next line in command history

CTRL+O # same as RETURN, then displays next line in history file

CTRL+P # previous line in command history

CTRL+R # searches backward

CTRL+S # searches forward

CTRL+T # transposes two characters

CTRL+U # kills backward from point to the beginning of line

CTRL+V # makes the next character typed verbatim

CTRL+W # kills the word behind the cursor

CTRL+X # lists the possible filename completefions of the current word

CTRL+Y # retrieves (yank) last item killed

CTRL+Z # stops the current command, resume with fg in the foreground or
bg in the background

DELETE # deletes one character backward

11 # repeats the last command

exit # logs out of current session

# 1. Bash Basics.

export # displays all environment variables

echo $SHELL # displays the shell you're using

echo $BASH_VERSION # displays bash version

bash # if you want to use bash (type exit to go back to
your normal shell)

whereis bash # finds out where bash is on your system

clear # clears content on window (hide displayed lines)

1 of4

# 1.1. File Commands.

1s lists your files

1s -1 lists your files in 'long format'

1s -a lists all files, including hidden files

In -s <filename> <link>
touch <filename>

cat > <filename>

more <filename>

head <filename>

tail <filename>

emacs <filename>

mv <filename1> <filename2>
cp <filenamel> <filename2>
rm <filename>

diff <filename1> <filename2>
wc <filename>

chmod -options <filename>
gzip <filename>

gunzip <filename>

gzcat <filename>

lpr <filename>

1pq

lprm <jobnumber>

grep <pattern> <filenames>
grep -r <pattern> <dir>

creates symbolic link to file

creates or updates your file

places standard input into file

shows the first part of a file (g to quit)
outputs the first 10 lines of file

outputs the last 10 lines of file (-f too)
lets you create and edit a file

moves a file

copies a file

removes a file

compares files, and shows where differ
tells you how many lines, words there are
lets you change the permissions on files
compresses files

uncompresses files compressed by gzip

lets you look at gzipped files

print the file

check out the printer queue

remove something from the printer queue
looks for the string in the files

search recursively for pattern in directory

HHEHHFHHHFHHHE S

# 1.2. Directory Commands.

mkdir <dirname> # makes a new directory

cd # changes to home
cd <dirname> # changes directory
pwd # tells you where you currently are

# 1.3. SSH, System Info & Network Commands.

ssh user@host # connects to host as user

ssh -p <port> user@host # connects to host on specified port as user

ssh-copy-id user@host # adds your ssh key to host for user to enable a
keyed or passwordless login

whoami # returns your username

passwd # lets you change your password

quota -v # shows what your disk quota is

date # shows the current date and time

cal # shows the month's calendar

uptime # shows current uptime

w # displays whois online

finger <user> # displays information about user

uname -a # shows kernel information

man <command> # shows the manual for specified command
df # shows disk usage

du <filename> # shows the disk usage of the files and



directories in filename (du -s give only a total)

last <yourUsername> # lists your last logins

ps -u yourusername # lists your processes

kill <PID> # kills (ends) the processes with the ID you gave
killall <processname> # kill all processes with the name

top # displays your currently active processes

bg # lists stopped or background jobs

fg # brings the most recent job in the foreground
fg <job> # brings job to the foreground

ping <host> # pings host and outputs results

whois <domain> # gets whois information for domain

dig <domain> # gets DNS information for domain

dig -x <host> # reverses lookup host

wget <file> # downloads file

# 2.
# 2.1. Variables.

Basic Shell Programming.

varname=value # defines a variable

varname=value command # defines a variable to be in the environment
echo $varname # checks a variable's value

echo $% # prints process ID of the current shell

echo $! # prints process ID of the most recent job
echo $? # displays the exit status of last command
export VARNAME=value # defines an environment variable

array[0] = val # several ways to define an array

array[1] = val

array[2] = val

array=([2]=val [0]=val [1]=val)
array(val val val)

${array[i]} # displays array's value for this index
${#array[i]} # to find out the length of any element
${#array[@]} # to find out how many values there are
declare -a # the variables are treaded as arrays

declare -f # uses funtion names only

declare -F # displays function names without definitions
declare -i # the variables are treaded as integers
declare -r # makes the variables read-only

declare -x # marks the variables for export via the
environment

${varname: -word} # if varname exists and isn't null, return
its value; otherwise return word

${varname:=word} # if varname exists and isn't null, return
its value; otherwise set it word and then return its value

${varname:?message} # if varname exists and isn't null, return
its value; otherwise print varname, followed by message and abort
the current command or script

${varname:+word} # if varname exists and isn't null, return
word; otherwise return null

${varname:offset:length} # performs substring expansion

2 of 4

${#varname} # returns the length of the value of the
variable as a character string

*(patternlist) # matches zero or more occurences of the
given patterns

+(patternlist) # matches one or more occurences of the given
patterns

?(patternlist) # matches zero or one occurence of the given
patterns

@(patternlist) # matches exactly one of the given patterns

!(patternlist) # matches anything except one of the given
patterns

$(UNIX command) # command substitution: runs the command and

returns standard output

# 2.2. Functions.

# The function refers to passed arguments by position (as if they were

# positional parameters), that is, $1, $2, and so forth. $@ is equal to
# "$1" "$2"... "$N", where N is the number of positional parameters. $#
# holds the number of positional parameters.

functname() {
shell commands

h

# deletes a function definition
# displays all defined functions in your login session

unset -f functname
declare -f

# 2.3. Flow Control.

statement1 && statement2 # and operator

statement1 || statement2 # or operator

-a # and operator inside a test conditional
-0 # or operator inside a test conditional
stri=str2 # str1 matches str2

stri1l=str2 # str1 does not match str2

stri<str2 # str1 is less than str2

stri1>str2 # str1 is greater than str2

-n str1 # str1 is not null (has length greater than 0)
-z str1 # str1 is null (has length 0)

-a file # file exists

-d file # file exists and is a directory

-e file # file exists; same -a

-f file # file exists and is a regular file

-r file # you have read permission

-r file # file exists and is not empty

-w file # your have write permission

-x file # you have execute permission on file

-N file # file was modified since it was last read
-0 file # you own file



-G file # file's group ID matches yours
filel -nt file2 # filel is newer than file2
filel -ot file2 # filel is older than file2
-1t # less than
-le # less than or equal
-eq # equal
-ge # greater than or equal
-gt # greater than
-ne # not equal
if condition
then
statements
[elif condition
then statements...]
[else
statements]
fi
for x := 1 to 10 do
begin
statements
end
for name [in list]
do
statements that can use $name
done

for (( initialisation ; ending condition ; update ))
do

statements...
done

case expression in
patternil )
statements ;;
pattern2 )
statements ;;

esac

select name [in list]
do

statements that can use $name
done

while condition; do
statements
done

until condition; do
statements
done

3of4
# 3. Command-Line Processing Cycle.

# The default order for command lookup is functions, followed by built-
# ins, with scripts and executables last. There are three built-ins that
# you can use to override this order: command®, ‘builtin® and ‘enable’.

command # removes alias and function lookup. Only built-ins and commands
found in the search path are executed

builtin # looks up only built-in commands, ignoring functions and
commands found in PATH

enable # enables and disables shell built-ins

eval # takes arguments and run them through the command-line
processing steps all over again

# 4. Input/Output Redirectors.

cmd1|cmd2 # pipe; takes standard output of cmdl as standard input to cmd2
> file # directs standard output to file

< file # takes standard input from file

>> file # directs standard output to file; append to file if it exists
&>file # directs standard output and standard error to file

<&- # closes the standard input

>&- # closes the standard output

# 5. Process Handling.

# To suspend a job, type CTRL+Z while it is running. You can also suspend
# a job with CTRL+Y. This is slightly different from CTRL+Z in that the
# process is only stopped when it attempts to read input from terminal.

# Of course, to interrupt a job, type CTRL+C.

myCommand & # runs job in the background and prompts back the shell

jobs # lists all jobs (use with -1 to see associated PID)
# brings a background job into the foreground

fg %+ # brings most recently invoked background job

fg %- # brings second most recently invoked background job
fg %N # brings job number N

fg %string # brings job whose command begins with string

fg %?string # brings job whose command contains string

kill -1 # returns a list of all signals on the system

kill PID # terminates process with specified PID

ps # prints a line of information about the current running
login shell and any processes running under it

ps -a # selects all processes with a tty except session leaders

trap cmd sigl sig2 # executes a command when a signal is received by the



script

trap "" sigl sig2 # ignores that signals

trap - sigl sig2 # resets the action taken when the signal is received
to the default

disown <PID|JID> # removes the process from the list of jobs

wait # waits until all background jobs have finished

# 6. Tips and Tricks.

# set an alias
cd; nano .bash_profile
> alias clc='clear' # add an alias in .bash_profile

# to quickly go to a specific directory

cd; nano .bashrc

> shopt -s cdable_vars

> export websites="/Users/mac/Documents/websites"

source .bashrc
cd websites

# 7.

Debugging Shell Programs.
bash -n scriptname # don't run commands; check for syntax errors only
set -0 noexec # alternative (set option in script)

bash -v scriptname
set -o verbose

echo commands before running them
alternative (set option in script)

bash -x scriptname
set -0 xtrace

#

#

# echo commands after command-line processing

# alternative (set option in script)

trap 'echo $varname' EXIT # useful when you want to print out the values
of variables at the point that your script exits

function errtrap {

es=%$?

echo "ERROR line $1: Command exited with status $es."
+

trap 'errtrap $LINENO' ERR # is run whenever a command in the surrounding
script or function exists with non-zero status

function dbgtrap {
echo "badvar is $badvar"
}

trap dbgtrap DEBUG # causes the trap code to be executed before every
statement in a function or script

# ...section of code in which the problem occurs...

4 of 4
trap - DEBUG # turn off the DEBUG trap

function returntrap {
echo "A return occured"

}

trap returntrap RETURN # is executed each time a shell function or a
script executed with the . or source commands finishes executing

# 8. Editing Files.

# Edit text files directly from the command line. There are 3 main tools
# that can be used: 1) nano, the simplest and easiest to use, 2) vim, full
# featured but a steep learning curve, 3) emacs, shorter learning curve

# and extremely feature rich (generally not pre-installed).

nano # Launch nano with a blank file
nano <file> # Launch nano and open <file>

# Commands onces inside nano

CTRL-R # Open (read) a file
CTRL-0 # Save file
CTRL-X # Close file

# Basic vim (vi) commands

vim # Launch vim with blank file
vim <file> # Launch vim and open <file>

# Commands once inside vim

re <file> # open <file> to edit

W # Save file

Twq # Save file then quit

:q! # Do NOT save file and quit now (this one is important!)

i # Insert text (vim starts in “command mode”, not edit mode)
ESC # Return to command mode (this is when you can save and exit)

# Basic emacs commands

emacs # Launch vim with blank file
emacs <file> # Launch vim and open <file>

$ Commands once inside emacs
CTRL-X CTRL-F

CTRL-X CTRL-S
CTRL-X CTRL-C

# Open a file to edit
# Save file
# Exit emacs



