ICGE Module 2 Session 3—Python!

/

T LEARNED IT LAST
NIGHT! EVERYTHING
1S SO SIMPLE!

I

HELLO WORLD 1S JUsT
print "Hello, world!"

I DUNNO...
DYNAMIC TYPING?
WHITEGRRCE?

COME JoIN US!
PROGRAMMING
1S FUN AGAIN!
IT'S A WHOLE
NEW WORLD

\ UP HERE!

BUT HW ARE
YOU FLYING?

I JUST TYPED
import W‘I":Igmui’fy
THATS 1T7? [

... L ALS0 SAMPLED
EVERYHING IN THE
MEDICINE CABINET
FOrR COMPARISOMN.

[

RUT T THINK THIS

1S THE PYTHON.

/€GE/WO0d pIX//:sd1y

Monte Carlo simulations use random numbers
to statistically sample different outcomes

A simple use of Monte Carlo simulation is to
calculate the relative area of a region:

What's the ratio of the
area of the circle to
the area of the square?

nR2
(2R)?

Darts in circle
T=4X .
Darts in square

Darts in circle
Darts in square

=L=
4

Here's a simple Python program to simulate
this process using virtual darts

#1/usr/bin/python
import random
import math

inside=0
trials=1000
for 1 1In range(trials):
x=random. random() Indentation matters!
y=random. random()
It (xX*xty*y)<1.0:
inside+=1

pi=4_*float(inside)/float(trials)
print "N=%d Error=%8.5f "%(trials,pi-math.pi)

Enter into an idle editing window
and then save as "pi .py"

Many problems in physics, chemistry and biology
essentially boil down to "random walks"”

=R =

4| -3/-2-1]0 |1 2 3| 4

Simplest question to ask—does the
walker ever get back home?

Python program for 1-D random walk

from future_ 1mport division
from random import choice
trials=1000
steps=1000
gothome=0
for 1 1In range(trials):
point=0
for step In range(steps):
point+=choice((-1,1))
1T point==0:
gothome+=1
break
print "Fraction that got home=%f" % (gothome/trials)

Save this as "rwalkld.py" and run for different numbers of steps

The problem gets more interesting if the walker
moves ih 2 or more dimensions

(2,-2) | (2,-1) | (2,0) (1,1) (2,2)
N
(1,-2) | (1,-1) | (1,0) (1,1) (1,2)
Jy L
= ﬁ(/
(0,-2) | (0,-1) (0,0) (0,1) (0,2)
(-1,-2) | (-1,-1) | (-1,0) | (1,1) (2,2)
(-2,-2) | (-2,-1) | (-2,0) | (-2,2) | (-2,2)

Note that if we randomly change both x & y coordinates by -1 or
+1, the walker moves diagonally like a checkers piece.

Python program for arbitrary-D random walk
making diagonal moves at every step

from _ future _ 1mport division
from random import choice
dim=3
trials=1000
steps=1000
gothome=0
for 1 1In range(trials):
point=[0]*dim
for step 1In range(steps):
for jJ 1n range(dim):
point[j]+=choice((-1,1))
iIT point.count(0)==dim:
gothome+=1
break
print "Fract that got home=%f In %d dims"™ % (gothome/trials,dim)

Save this as "rwalknd.py"” and run for different dimensions

For what #'s of dimensions does the walker make it home?

Exact results for an infinite number of steps

moving in only one dimension at a time

Research questions:

Prob(get home

1.000
1.000
0.341
0.193
0.135
0.105
0.086
0.073

(2!_2)

(2!_1)

(2,0)

(1,1)

(2,2)

(1!_2)

[1F_1)

(1,0)

(1,1)

(1,2)

(01'2)

(0!'1)

(0,0)

(0.1)

(0,2)

('11_2)

(_11_1)

(_110)

(1,1) ma)2,2)
1

(-2,-2)

(-2,-1)

> 4m
C

{_

j—-2,1)

(-2,2)

1. How well does rwalknd.py agree with the exact results?

2. Do your results match better if you modify the program
to step in only one dimension at a time?

Exact results from http://mathworld.wolfram.com/PolyasRandomWalkConstants.html

