ICGE Module 2 Session 3—Python!
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T LEARNED IT LAST
NIGHT! EVERYTHING
1S SO SIMPLE!

I

HELLO WORLD 1S JUsT
print "Hello, world!"

I DUNNO...
DYNAMIC TYPING?
WHITEGRRCE?

COME JoIN US!
PROGRAMMING
1S FUN AGAIN!
IT'S A WHOLE
NEW WORLD

\ UP HERE!

BUT HW ARE
YOU FLYING?

I JUST TYPED
import W‘I":Igmui’fy
THATS 1T7? [

... L ALS0 SAMPLED
EVERYHING IN THE
MEDICINE CABINET
FOrR COMPARISOMN.

[

RUT T THINK THIS

1S THE PYTHON.
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Monte Carlo simulations use random numbers
to statistically sample different outcomes

A simple use of Monte Carlo simulation is to
calculate the relative area of a region:

What's the ratio of the
area of the circle to
the area of the square?

nR2
(2R)?

Darts in circle
T=4X .
Darts in square

Darts in circle
Darts in square

=L=
4




Here's a simple Python program to simulate
this process using virtual darts

#1/usr/bin/python
import random
import math

inside=0
trials=1000
for 1 1In range(trials):
x=random. random() Indentation matters!
y=random. random()
It (xX*xty*y)<1.0:
inside+=1

pi=4_*float(inside)/float(trials)
print "N=%d Error=%8.5f "%(trials,pi-math.pi)

Enter into an idle editing window
and then save as "pi .py"



Many problems in physics, chemistry and biology
essentially boil down to "random walks"”
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Simplest question to ask—does the
walker ever get back home?



Python program for 1-D random walk

from  future_ 1mport division
from random import choice
trials=1000
steps=1000
gothome=0
for 1 1In range(trials):
point=0
for step In range(steps):
point+=choice((-1,1))
1T point==0:
gothome+=1
break
print "Fraction that got home=%f" % (gothome/trials)

Save this as "rwalkld.py" and run for different numbers of steps



The problem gets more interesting if the walker
moves ih 2 or more dimensions
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Note that if we randomly change both x & y coordinates by -1 or
+1, the walker moves diagonally like a checkers piece.




Python program for arbitrary-D random walk
making diagonal moves at every step

from _ future _ 1mport division
from random import choice
dim=3
trials=1000
steps=1000
gothome=0
for 1 1In range(trials):
point=[0]*dim
for step 1In range(steps):
for jJ 1n range(dim):
point[j]+=choice((-1,1))
iIT point.count(0)==dim:
gothome+=1
break
print "Fract that got home=%f In %d dims"™ % (gothome/trials,dim)

Save this as "rwalknd.py"” and run for different dimensions

For what #'s of dimensions does the walker make it home?




Exact results for an infinite number of steps

moving in only one dimension at a time

Research questions:

Prob(get home
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1. How well does rwalknd.py agree with the exact results?

2. Do your results match better if you modify the program
to step in only one dimension at a time?

Exact results from http://mathworld.wolfram.com/PolyasRandomWalkConstants.html




