
ICGE Module 2 Session 4

http://www.mit.edu/~kardar/teaching/projects/chemotaxis(AndreaSchmidt)/finding_food.htm

Scientific application of Python: Random Walks

Right:

https://commons.wikimedia.org/wiki/File:Random_walk_25000.gif
Left:

Many problems in physics, chemistry and biology
essentially boil down to “random walks”

Simplest question to ask—does the
walker ever get back home?

from __future__ import division
from random import choice
trials=1000
steps=1000
gothome=0
for i in range(trials):

point=0
for step in range(steps):

point+=choice((-1,1))
if point==0:

gothome+=1
break

print "Fraction that got home=%f" % (gothome/trials)

Python program for 1-D random walk

Save this as “rwalk1d.py” and run for different numbers of steps

Note that if we randomly change both x & y coordinates by -1 or
+1, the walker moves diagonally like a checkers piece.

The problem gets more interesting if the walker
moves in 2 or more dimensions

from __future__ import division
from random import choice
dim=3
trials=1000
steps=1000
gothome=0
for i in range(trials):

point=[0]*dim
for step in range(steps):

for j in range(dim):
point[j]+=choice((-1,1))

if point.count(0)==dim:
gothome+=1
break

print "Fract that got home=%f in %d dims" % (gothome/trials,dim)

Save this as “rwalknd.py” and run for different dimensions

Python program for arbitrary-D random walk
making diagonal moves at every step

For what #’s of dimensions does the walker make it home?

Dimensions Prob(get home)
1 1.000
2 1.000
3 0.341
4 0.193
5 0.135
6 0.105
7 0.086
8 0.073

Exact results for an infinite number of steps
moving in only one dimension at a time

Exact results from http://mathworld.wolfram.com/PolyasRandomWalkConstants.html

Research questions:
1. How well does rwalknd.py agree with the exact results?
2. Do your results match better if you modify the program

to step in only one dimension at a time?

from __future__ import division
from random import choice
dim=3
trials=1000
steps=1000
gothome=0
for i in range(trials):

point=[0]*dim
for step in range(steps):

movedim=choice(range(dim))
point[movedim]+=choice((-1,1))
if point.count(0)==dim:

gothome+=1
break

print "Fract that got home=%f in %d dims" % (gothome/trials,dim)

Save this as “rwalknd2.py” and run for different dimensions

Python program for arbitrary-D random moving
in just one dimension each step

Do these results agree better with pure theory?

Another important type of random walk
simulation is diffusion-limited aggregation (DLA)

https://en.wikipedia.org/wiki/Diffusion‐limited_aggregation

We can simulate DLA with a random
2-D walk where the particle stops if
it hits an existing particle

DLA “crystal” in copper sulfate solution

DLA Python program using very simple graphics
based on the Python Image Library (PIL)
from random import choice
from drawgridlib import drawgrid, savegrid
npart=200 #Number of particles to aggregate
side=75 #Should be an odd number
steps = [(1,0),(-1,0),(0,1),(0,-1)]
grid=[[0 for x in range(side)] for y in range(side)]
grid[side/2][side/2]=1
for ipart in range(npart):

Start particle at origin
x,y = 0,0
perform the random walk until particle aggregates
while 1:

grid[x][y]=0 #Remove particle from current spot
Randomly move particle
sx,sy = choice(steps)
x += sx
y += sy
Enforce periodic boundaries
if x < 0: x=side-1
if y < 0: y=side-1
if x==side: x=0
if y==side: y=0
grid[x][y]=1 #Put particle in new location
Stop if you are next to a particle
if (grid[(x+1)%side][y]+grid[x][(y+1)%side]+

grid[(x+side-1)%side][y]+grid[x][(y+side-1)%side])>0:
break

drawgrid(grid,side) #Displays image to screen
#savegrid(grid,side) #Stores image in dla.jpg

Output

Simulation grid

