
HOW TO WRITE PARALLEL PROGRAMS
AND UTILIZE CLUSTERS EFFICIENTLY

Sarvani Chadalapaka
HPC Administrator

University of California Merced, Office of Information Technology
schadalapaka@ucmerced.edu

it.ucmerced.edu

WHAT IS PARALLEL COMPUTING?

• In the simplest sense, parallel computing is the simultaneous use of
multiple compute resources to solve a computational problem.

• To be run using multiple CPUs

• A problem is broken into discrete parts that can be solved concurrently

• Each part is further broken down to a series of instructions

• Instructions from each part execute simultaneously on different CPUs

PARALLEL COMPUTING: THE COMPUTATIONAL
PROBLEM
The computational problem usually demonstrates
characteristics such as the ability to be:

• Broken apart into discrete pieces of work that can be
solved simultaneously

• Execute multiple program instructions at any moment in
time

• Solved in less time with multiple compute resources than
with a single compute resource

• Undoubtedly, the first step in developing parallel software is to
first understand the problem that you wish to solve in parallel. If
you are starting with a serial program, this necessitates
understanding the existing code also.

• Before spending time in an attempt to develop a parallel solution
for a problem, determine whether or not the problem is one that
can actually be parallelized.
Calculate the potential energy for each of several thousand

independent conformations of a molecule. When done, find the
minimum energy conformation.

This problem is able to be solved in parallel. Each of the
molecular conformations is independently determinable. The
calculation of the minimum energy conformation is also a
parallelizable problem.

HOW TO WRITE PARALLEL PROGRAMS

EXAMPLE OF A NON-PARALLELIZABLE PROBLEM

Calculation of the Fibonacci series (1,1,2,3,5,8,13,21,...)
by use of the formula:

F(k + 2) = F(k + 1) + F(k)

This is a non-parallelizable problem because the
calculation of the Fibonacci sequence as shown would
entail dependent calculations rather than independent
ones. The calculation of the k + 2 value uses those of both
k + 1 and k. These three terms cannot be calculated
independently and therefore, not in parallel.

IDENTIFY THE PROGRAM’S HOTSPOTS

• Know where most of the real work is being done. The
majority of scientific and technical programs usually
accomplish most of their work in a few places.

• Profilers and performance analysis tools can help here

• Focus on parallelizing the hotspots and ignore those
sections of the program that account for little CPU usage.

IDENTIFY BOTTLENECKS IN THE PROGRAM

• Are there areas that are disproportionately slow, or cause
parallelizable work to halt or be deferred? For example,
I/O is usually something that slows a program down.

• May be possible to restructure the program or use a
different algorithm to reduce or eliminate unnecessary
slow areas

OTHER CONSIDERATIONS

• Identify inhibitors to parallelism. One common class of
inhibitor is data dependence, as demonstrated by the
Fibonacci sequence above.

• Investigate other algorithms if possible. This may be the
single most important consideration when designing a
parallel application.

EFFICIENT PARALLEL PROGRAMMING

An efficient parallel implementation of a serial program may not be
obtained by finding efficient parallelizations of each of its steps.
Rather, the best parallelization may be obtained by stepping back
and devising an entirely new algorithm.

Example:

Compute n values and add them together

We know that this can be done with the following serial code:

sum = 0;

for (i = 0; i < n; i++) {

x = Compute next value(. . .);

sum += x;

}

• Now suppose we also have p cores and p is much smaller
than n.

• Then each core can form a partial sum of approximately
n/p values:

my sum = 0;
my first i = . . . ;
my last i = . . . ;
for (my i = my first i; my i < my last i; my i++)
{

my x = Compute next value(. . .);
my sum += my x;

}

For	example,	if	there	are	eight	cores,	n	=	24,	and	the	24	calls	to	
Compute_next_value return	the	values	
1,	4,	3,	9,	2,	8,	5,	1,	1,	6,	2,	7,	2,	5,	0,	4,	1,	8,	6,	5,	1,	2,	3,	9,
then	the	values	stored	in	my	sum	might	be:

Core 0 1 2 3 4 5 6 7

my_sum 8 19 7 15 7 13 12 14

When the cores are done computing their values of my sum, they
can form a global sum by sending their results to a designated
“master” core, which can add their results:
if (I’m the master core) {
sum = my x;
for each core other than myself {
receive value from core; sum += value;
}

} else { send my x to the master; }

AMDAHL’S LAW

If	F	is	the	fraction	of	a	calculation	that	is	sequential,	and	(1-F)	is	the	
fraction	that	can	be	parallelized,	then	the	maximum	speed-up	that	
can	be	achieved	by	using	P	processors	is	1/(F+(1-F)/P).	
If	90%	of	a	calculation	can	be	parallelized	(i.e.	10%	is	sequential)	then	the	
maximum	speed-up	which	can	be	achieved	on	5	processors	is	1/(0.1+(1-0.1)/5)	
or	roughly	3.6	(i.e.	the	program	can	theoretically	run	3.6	times	faster	on	five	
processors	than	on	one)	
The point that Amdahl was trying to make was that using lots of parallel
processors was not a viable way of achieving the sort of speed-ups that
people were looking for. i.e. it was essentially an argument in support of
investing effort in making single processor systems run faster.

13

Proof	for	Traditional	Problems:	If	the	fraction	of	the	computation	that	cannot	be	
divided	into	concurrent	tasks	is	f,	and	no	overhead	incurs	when	the	computation	
is	divided	into	concurrent	parts,	the	time	to	perform	the	computation	with	n	
processors	is	given	by		tp ≥	fts +	[(1	- f)ts]	/	n,	as	shown	below:

14

CONSEQUENCES OF AMDAHL’S LIMITATIONS
TO PARALLELISM
• For	a	long	time,	Amdahl’s	law	was	viewed	as	a	fatal	flaw	to	the	usefulness	of	
parallelism.
• Amdahl’s	law	is	valid	for	traditional	problems	and	has	several	useful	
interpretations.
• Some	textbooks	show	how	Amdahl’s	law	can	be	used	to	increase	the	efficient	of	
parallel	algorithms	
• See	Reference	(16),	Jordan	&	Alaghband textbook	

• Amdahl’s	law	shows	that	efforts	required	to	further	reduce	the	fraction	of	the	
code	that	is	sequential	may	pay	off	in	large	performance	gains.
• Hardware	that	achieves	even	a	small	decrease	in	the	percent	of	things	executed	
sequentially	may	be	considerably	more	efficient.

15

LIMITATIONS OF AMDAHL’S LAW

• A	key	flaw	in	past	arguments	that	Amdahl’s	law	is	a	fatal	limit	to	the	future	of	
parallelism	is	
• Gustafon’s Law: The	proportion	of	the	computations	that	are	sequential	
normally	decreases	as	the	problem	size	increases.

• Other	limitations	in	applying	Amdahl’s	Law:
• Its	proof	focuses	on	the	steps	in	a	particular	algorithm,	and	does	not	
consider	that	other	algorithms	with	more	parallelism	may	exist

• Amdahl’s	law	ignores	the	communication	cost	in	MIMD	(Multiple	Instruction	
Multiple	Data)	systems.
• On	communications-intensive	applications,	there	could	be	an	additional	
communication	slowdown	due	to	network	congestion.	
• As	a	result,	Amdahl’s	law	usually	overestimates	speedup	achievable

EFFECTIVE UTILIZATION OF MERCED CLUSTER

• Know	your	code,	its	resource	needs,	and	resource	scaling.	A	few	minutes	of	
planning	and	benchmarking	will	yield	great	returns	in	productivity	later.
• Always	use	the	queue	system	to	run	jobs.	Do	not	run	on	the	head-node.
• Don't	mindlessly	run	calculations.	Know	how	things	are	progressing	and	know	
if	your	calculation	is	running	as	expected.	If	something	seems	off,	dig	into	it	
and	understand	what's	going	on.
• If	you	think	calculations	are	not	running	well,	ask	for	help	from	colleagues	and	
the	HPC	staff.

