
Introduction to BASH: Part II
By Michael Stobb

University of California, Merced

February 17th, 2017

Quick Review
● Linux is a very popular operating system for scientific computing

● The command line interface (CLI) is ubiquitous and efficient

● A “shell” is a program that interprets and executes a user's commands

○ BASH: Bourne Again SHell (by far the most popular)

○ CSH: C SHell

○ ZSH: Z SHell

● Does everyone have access to a shell?

Quick Review: Basic Commands
● pwd

○ ‘print working directory’, or where are you currently

● cd

○ ‘change directory’ in the filesystem, or where you want to go

● ls

○ ‘list’ the contents of the directory, or look at what is inside

● mkdir

○ ‘make directory’, or make a new folder

● cp

○ ‘copy’ a file

● mv

○ ‘move’ a file

● rm

○ ‘remove’ a file (be careful, usually no undos!)

● echo

○ Return (like an echo) the input to the screen

● Autocomplete!

Download Some Example Files
1) Make a new folder, perhaps ‘bash_examples’, then cd into it.

2) Type the following command:

wget "goo.gl/oBFKrL" -O tutorial.tar

3) Extract the tar file with:

tar -xf tutorial.tar

4) Delete the old tar file with

rm tutorial.tar

5) cd into the new director ‘tutorial’

Capital ‘o’

Input/Output Redirection
● Typically we give input to a command as follows:

○ cat file.txt

● Make the input explicit by using “<”

○ cat < file.txt

● Change the output by using “>”

○ cat < file.txt > output.txt

● Use the output of one function as the input of another

○ cat < file.txt | less

BASH Utilities
● BASH has some awesome utilities

○ External commands not directly affiliated with BASH

○ Common on almost all Linux systems

BASH Utilities: bc
● bc - A basic calculator

● Doesn’t support floating points by default

● Use -l option to load standard math libraries

● bc

BASH Utilities: du
● du - check disk usage

● Tells you how much hard disk space you are using

● Use -h option for ‘human’ readable units

● bc
● du

BASH Utilities: ps
● ps - List all the running processes

● Tells you what programs are running and who is running them

● Use -aux options to list all programs with more information

● bc
● du
● ps

BASH Utilities: sleep
● sleep - Do nothing for a defined length of time

● Will cause the computer to just wait

● Use suffix s, m, h, or d to define units (seconds, minutes, etc.)

● bc
● du
● ps
● sleep

BASH Utilities: sort
● sort - Sort the given lines in ascending order

● Can sort either alphabetically or by number

● Use -r to reverse direction, and -kn to sort by column n

● bc
● du
● ps
● sleep
● sort

BASH Utilities: time
● time - Time how long it takes to execute a command

● Reports back in seconds by default

● Typical use is ‘time command’

● Try it with sleep!

● bc
● du
● ps
● sleep
● sort
● time

BASH Utilities: tr
● tr - Translate or delete a character in a file

● Fast and easy way to remove all of a character from a file

● Use -d option to delete

● Use tr ‘a’ ‘b’ < input.txt > output.txt to replace all a with b

● bc
● du
● ps
● sleep
● sort
● time
● tr

BASH Utilities: grep
● grep - Globally search for a Regular expression and print

● Search through files to find matching text

● Uses regular expressions (a whole different discussion!)

● Use as ‘grep pattern < input.txt’

● bc
● du
● ps
● sleep
● sort
● time
● tr
● grep

BASH Utilities: awk
● awk - A full programming language itself, typically used for

extracting data from files

● Can write full programs in Awk!

● Most often used for ‘one-liner’ functions

● Examples:

○ Print out third column: awk ‘{print $3}’ < input.txt

○ Sum column 6 in file: awk '{sum += $6} END {print sum}' < input.txt

○ Print any line where column 6 > 30: awk '$6 > 30' < input.txt

○ Sum column 6, but only if column 6 > 30: awk '$6 > 30 {sum += $6} END {print sum}' < input.txt

● bc
● du
● ps
● sleep
● sort
● time
● tr
● grep
● awk

BASH Utilities: awk
You Try it! Use the people_table.txt and awk to answer the questions:

1) What is the total amount of money made by people over 30?

2) By only modifying your last command, what is the average per person?

BASH Utilities: awk
You Try it! Use the people_table.txt and awk to answer the questions:

1) What is the total amount of money made by people over 30?

2) By only modifying your last command, what is the average per person?

cat people_table.txt | tr -d '$' | tr -d ',' | awk '$6 > 30 {sum += $8} END {print sum}'

cat people_table.txt | tr -d '$' | tr -d ',' | awk '$6 > 30 {sum += $8; count++} END {print sum/count}'

BASH Programming: Variables
● Variables are stored as

varName=value

○ Note: Cannot have spaces!

● Stored values are accessed with

$varName

● Special parameters:

○ $? - Contains exit status of last command

○ $0 - Name of the current running command

○ $1 - First argument of the current running command

○ env - List all current environment variables for the session

BASH Programming: Looping
● Lots of different ways to loop over commands

1) for i in LIST

do

commands;

done

2) while CONDITION

do

commands;

done

LIST examples
● {1..100..1}
● $(ls)
● 1 2 3 4 5 6
● File1 File2 File3

COND examples
● [$x -le 5]
● [$count -gt 4]
● read line
● Many more!

BASH Programming: Conditionals
● If/then/else statements allow branching in BASH:

if [condition*]
then

command1;
elif [condition*]
then

command2
else

command3
fi

*Conditions are same
as for the while loop!

BASH Programming: Functions
● User defined functions are also possible

● Input parameters are passed as space separated words:

FuncName arg1 arg2 arg3

Define Function

Function_name ()
{

Commands;
}

Use Function

Just type: Function_name

Example

sayHello ()
{

for i in {1..$1}
do

echo Hello $i;
done

}

BASH Programming: Scripts
● BASH Script: A plain-text file of commands for BASH to run

● Can contain:

○ Bash commands (cd, ls, cat, …)

○ Variable definitions

○ Logical statements (loops, conditionals, etc.)

○ External function calls (e.g. python calls)

○ Function definitions

○ Comments!

○ Anything else that the command line can understand

● File must start with the SheBang

#!/bin/bash

BASH Programming: Scripts
● BASH Script: A plain-text file of commands for BASH to run

● Can contain:

○ Bash commands (cd, ls, cat, …)

○ Variable definitions

○ Logical statements (loops, conditionals, etc.)

○ External function calls (e.g. python calls)

○ Function definitions

○ Comments!

○ Anything else that the command line can understand

● File must start with the SheBang

#!/bin/bash

