A new method for computational cosmological data analysis

Pale Blue Dot Team:

Alyssa Funk

Farnaz Golnaraghi

Thomas Thayer

Jose Zamora

Advisory Board: Dr. David Brown, Dr. Peter Nugent Faculty Mentor: Dr. Juan Meza

April 28, 2017

Background

Dark Energy Survey Telescope

Background

THE ASTRONOMICAL JOURNAL, 150:82 (15pp), 2015 September © 2015. The American Astronomical Society. All rights reserved. doi:10.1088/0004-6256/150/3/82

AUTOMATED TRANSIENT IDENTIFICATION IN THE DARK ENERGY SURVEY

D. A. GOLDSTEIN^{1,2}, C. B. D'ANDREA³, J. A. FISCHER⁴, R. J. FOLEY^{5,6}, R. R. GUPTA⁷, R. KESSLER^{8,9}, A. G. KIM², R. C. NICHOL³,

- <u>Automated</u>: minimal human interference
- <u>Transient identification</u>: find short-lived cosmological phenomena (like supernovae)

DES-SN transient detection pipeline

DES-SN transient detection pipeline

DES-SN transient detection pipeline

Autoscan Disadvantages

- Dependencies are proprietary
- Designed for specific dataset

Pale Blue Dot workflow

Machine Learning

- "[Machine Learning is the] field of study that gives computers the ability to learn without being explicitly programmed" - Arthur Samuel, 1959
- Combination of multiple fields
- Basic problems include clustering, regression, and classification
- Multiple potential algorithms:
 - Deep Neural Networks, Random Forests

Deep Neural Networks

- Ensemble of many layers of neurons with a specified structure
- Benefits Potentially very accurate, great for image data
- Caffe
 - Allows quick redefinition of neural net geometry
 - Fast computation using nvidia GPUs
 - Open source

Random Forests

- Ensemble of many random decision trees
- Benefits less likely to overfit, works best with feature-based data
- Used by Autoscan to classify artifacts
- Scikit
 - Different ensemble methods
 - Open source

ResultsCaffeSciKitining images10,000 san

67,000 training images		10,000 sample size	
92% accuracy		95.6% accuracy	
True Positive	99.7%	82.4%	
False Positive	0.3%	17.6%	

Advantages for our methods

- Achieving > 90% accuracy
- No need for proprietary dependencies, e.g. Oracle
- Flexibility with data types

Future direction

- Find essential features for accurate prediction (SciKit)
- Test different machine learning algorithms on SciKit
- Ensemble of Caffe and SciKit
- Test our dual method on new data set
- Classification of objects

Thank you from Earth

|S| O N

Special thanks to:

David Brown, Ph.D Peter Nugent, Ph.D Juan Meza, Ph.D

