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e Automated: minimal human interference

e Transient identification: find short-lived cosmological

phenomena (like supernovae)




DES-SN transient detection pipeline
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DES-SN transient detection pipeline
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DES-SN transient detection pipeline

[Identify artifacts with A
machine learning
algorithm

(autoScan) )

v

) 4 I 4 I

Extract objects from Make selection cuts

difference images on extracted objects
(SExtractor) (see Table 1)

J . J N

Visually scan
Select targets for candidates with at least : . .
< . objects into transient
spectroscopy two nights of non-

) . candidates
L artifact detections ) L )

Spatially associate




Autoscan Disadvantages

e Dependencies are proprietary

e Designed for specific dataset



Autoscan

Autoscan

Pale Blue Dot workflow
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Machine Learning

“IMachine Learning is the] field of
study that gives computers the ability
to learn without being explicitly
programmed” - Arthur Samuel, 1959
Combination of multiple fields

Basic problems include clustering,
regression, and classification

Multiple potential algorithms:
o Deep Neural Networks, Random Forests
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Deep Neural Networks

e Ensemble of many layers of neurons with a specified

structure
e Benefits - Potentially very accurate, great for image data

e Caffe
e Allows quick redefinition of neural net geometry

e Fast computation using nvidia GPUs

e Open source A
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BERKELEY ARTIFICIAL INTELLIGENCE RESEARCH



Random Forests

Ensemble of many random decision trees
Benefits - less likely to overfit, works best with
feature-based data

Used by Autoscan to classify artifacts

Scikit

o Different ensemble methods

o Open source

.Kea;m

machine learning in Python



Results

Caffe

67,000 training images

92% accuracy

True Positive

False Positive

SciKit
10,000 sample size

95.6% accuracy

99.7%

82.4%

0.3%

17.6%




Advantages for our methods

e Achieving > 90% accuracy
e No need for proprietary dependencies, e.g. Oracle

e Flexibility with data types



Future direction

Find essential features for accurate prediction
(SciKit)

Test different machine learning algorithms on SciKit
Ensemble of Caffe and SciKit

Test our dual method on new data set

Classification of objects
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