Learning the Power of Networks

Jonathan Anzules, Taran Rallings, Ayme Tomson

University of California, Merced

NRT-ICGE

28 April 2017

- Network interest in social media and causation
- Exposure to computational network analysis
- Ecological networks

New York City

イロト イ団ト イヨト イヨト

Jonathan Anzules, Taran Rallings, Ayme Tom

Learning the Power of Networks

28 April 2017 4 / 25

Power Grid Failure

This event contributed to at least 11 deaths and cost an estimated \$6 billion.

Cause of Failure:

- Natural events
- Human error
- Hardware malfunction

Affected States and Province:

- OH, MI, PA, NY, VT, MA, CT, NJ
- Ontario

 $^{^0}$ "Final Report on the August 14, 2003 Blackout" - U.S.-Canada Power System Outage Task Force

¹,"The anatomy of a power grid blackout" (Pourbeik,P. et al. 2006)

General Grid Structure

⁰taken from science.smith.edu Jonathan Anzules, Taran Rallings, Ayme Tom

(日) (同) (三) (三)

SciGRID German Transmission Grid

Figure: Data collected July 18, 2016

イロト イヨト イヨト イヨト

- Open source
- Extra-high voltage transmission system (220kV+)
- Minimum: two substations and one transmission lines
- Abstracted transmission network: transmission lines are not actual paths

- Random Graphs (Erdös-Rényi)
 - Degree homogeneity
 - Low clustering
 - Short average paths
 - Mathematically constructed

¹ "On random graphs, 1" (Erdös, P., & Rényi, A., 1959)

- Small-world Graphs (Watts-Strogatz)
 - Short average paths
 - High clustering
 - High modularity
- Small-World Networks
 - Social Networks
 - Cortical maps

 1 "Collective dynamics of 'small-world' networks" (Watts, D. J., & Strogatz, S. H., 1998) = \succ

- Scale-free Graphs (Barabási-Albert)
 - Degree heterogeneity
 - Low clustering
 - Fault tolerance
- Scale-free Networks
 - Protein-protein interactions
 - Semantic maps

 1 "Emergence of scaling in random networks" (Barabási, A. L., & Albert, R., 1999) ightarrow

Network	Germany Grid	Random	Small-world	Scale-free
Nodes	511	511	511	511
Edges	836	836	836	829
Avg Degree	3.27	3.27	3.27	3.25
Max Degree	16	10	6	33
Transitivity	0.11	0.006	0.31	0.01
Avg Path	10.8	5.4	10.2	4.5
Diameter	24	12	24	9
Assortativity	-0.13	-0.07	0.04	-0.03

Network	Germany Grid	Random	Small-world	Scale-free
Nodes	511	511	511	511
Edges	836	836	836	829
Avg Degree	3.27	3.27	3.27	3.25
Max Degree	16	10	6	33
Transitivity	0.11	0.006	0.31	0.01
Avg Path	10.8	5.4	10.2	4.5
Diameter	24	12	24	9
Assortativity	-0.13	-0.07	0.04	-0.03

Jonathan Anzules, Taran Rallings, Ayme Tom Learning the Power of Networks

Network	Germany Grid	Random	Small-world	Scale-free
Nodes	511	511	511	511
Edges	836	836	836	829
Avg Degree	3.27	3.27	3.27	3.25
Max Degree	16	10	6	33
Transitivity	0.11	0.006	0.31	0.01
Avg Path	10.8	5.4	10.2	4.5
Diameter	24	12	24	9
Assortativity	-0.13	-0.07	0.04	-0.03

Network	Germany Grid	Random	Small-world	Scale-free
Nodes	511	511	511	511
Edges	836	836	836	829
Avg Degree	3.27	3.27	3.27	3.25
Max Degree	16	10	6	33
Transitivity	0.11	0.006	0.31	0.01
Avg Path	10.8	5.4	10.2	4.5
Diameter	24	12	24	9
Assortativity	-0.13	-0.07	0.04	-0.03

- Modeling as a group
- Identify Goals
 - Generate and compare network models
 - Contrast targeted and random failure

- Maximize generality
- Unweighted, undirected
- Focus on topology

- Secondary topological failure
 - Sequentially remove nodes
 - Record secondary failures
- R, Igraph, Nexcade
- Degree matters
 - Red highest to lowest
 - Black random
 - Green lowest to highest

- The nuances of working in an interdisciplinary team
- R and bash scripting (iGraph, Nexcade)
- Network modeling

Industry Advisor

Dr. Mihai Anitescu

Faculty Advisors

Professor Paul "Find the Data" Maglio Professor Ashlie "Evaluate" Martini Professor Michael "It's About Learning" Spivey

Questions?

< 4 ₽ × <

- Open source
- Local Knowledge
- Community Driven

- Test Cases
- Simulated
- Proprietary
- Natural

- Electrical detail
- Applications in our domains