
https://xkcd.com
/353/

ICGE Programming Module—Python!

Why Python?
• Freely available for all types of computers
• Widely used grade schools to universities to industry
• Powerful object-oriented language, with great built-in types
• Easy to create GUIs and interface to internet
• Fun! Python does a lot of the hard work for you (unlike C++)

ht
tp

s:
//

sp
ec

tr
um

.ie
ee

.o
rg

/c
om

pu
tin

g/
so

ftw
ar

e/
th

e-
20

17
-to

p-
pr

og
ra

m
m

in
g-

la
ng

ua
ge

s

If you’re going to be using computers in your research—
take the time to find the toolkit that works right for you

My toolkit

Python is distributed with a simple integrated
development environment (IDE) called idle

When you start idle it opens and interactive shell window:

Just like R, Matlab or other interpreted languages,
you can interactively run Python commands in the shell

print "Hello world"
print("Hello world")
7*1.3
import math
math.
math.sqrt(16*144)
from math import sqrt
sqrt(1024)

for i in range(1,11):
y = i*i
print y

Typing prompts

A key strength of Python is the power and
completeness of its built-in data types (objects)

alist=[1, 9, 3, 7, "a"]
alist.count(3)
alist.pop()
alist.sort()
alist.reverse()

blist=[[1,2],[3,4]]
blist
blist[0][1]
blist[1]
list2d=[[0 for i in range(10)] for j in range(10)]

Lists are a general data container:

Lists can be “multimensional”:

The idle environment provides an editor to enter
Python code without immediately executing it

from random import choice
ndice=5
ngames=10
for i in range(ngames):

dice=[]
for j in range(ndice):

dice.append(choice(range(1,7)))
dice.sort()
lowtwo=dice[0]+dice[1]
print lowtwo

The idle environment provides an editor to enter
Python code without immediately executing it
Enter the following code into the editor box

Then select the “Run/Run module” menu option
Save the program as “dice.py”

There’s a great online learning tool for Python and
other languages lets you visualize code execution

1. Open up the web browser and go to the website:
http://www.pythontutor.com/

2. Click on the link entitled “Start visualizing your code now!”
3. Copy and paste the dice.py program from your idle window
4. Click the button entitled “Visualize Execution” below the editor box
5. Click the “Forward” button for each step in the program to run
6. As each variable is created or updated, you’ll see that space next to

the program.
7. Output will appear in a box below the editor box
8. To run to completion, click the “Last” button”
9. To modify the program, click the “Edit Code” link

ipd.py

2dmd.py

You can load existing Python programs into idle
and run them. Let’s look at a few simulation codes

lights_out.py

Monte Carlo simulations use random numbers
to statistically sample different outcomes

R

What’s the ratio of the
area of the circle to
the area of the square?

(2R)2

πR2
=

4
π = Darts in circle

Darts in square

π = 4 x Darts in circle

Darts in square

A simple use of Monte Carlo simulation is to
calculate the relative area of a region:

Here’s a simple Python program to simulate
this process using virtual darts

import random
import math

inside=0
trials=1000
for i in range(trials):

x=random.random()
y=random.random()
if (x*x+y*y)<1.0:

inside+=1

pi=4.*float(inside)/float(trials)
print "N=%d Error=%8.5f "%(trials,pi-math.pi)

Enter into an idle editing window
and then save as “pi.py”

Indentation matters!

Many problems in physics, chemistry and biology
essentially boil down to “random walks”

Simplest question to ask—does the
walker ever get back home?

from __future__ import division
from random import choice
trials=1000
steps=1000
gothome=0
for i in range(trials):

point=0
for step in range(steps):

point+=choice((-1,1))
if point==0:

gothome+=1
break

print "Fraction that got home=%f" % (gothome/trials)

Python program for 1-D random walk

Save this as “rwalk1d.py” and run for different numbers of steps

Note double underscores “_ _”

Note that if we randomly change both x & y coordinates by -1 or
+1, the walker moves diagonally like a checkers piece.

The problem gets more interesting if the walker
moves in 2 or more dimensions

from __future__ import division
from random import choice
dim=3
trials=1000
steps=1000
gothome=0
for i in range(trials):

point=[0]*dim
for step in range(steps):

for j in range(dim):
point[j]+=choice((-1,1))

if point.count(0)==dim:
gothome+=1
break

print "Fract that got home=%f in %d dims" % (gothome/trials,dim)

Save this as “rwalknd.py” and run for different dimensions

Python program for arbitrary-D random walk
making diagonal moves at every step

For what #’s of dimensions does the walker make it home?

Dimensions Prob(get home)
1 1.000
2 1.000
3 0.341
4 0.193
5 0.135
6 0.105
7 0.086
8 0.073

Exact results for an infinite number of steps
moving in only one dimension at a time

Exact results from http://mathworld.wolfram.com/PolyasRandomWalkConstants.html

Possible questions to explore:
1. How well does rwalknd.py agree with the exact results?
2. Do your results match better if you modify the program

to step in only one dimension at a time?

Another type of random walk simulation tests the
effect of barriers on trapping a walker in space

0.2 0.3 0.4 0.5 0.6 0.7 0.8

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Size
21
31
41
51

Barriers

Walker
Barriers density

Pe
rc

ol
at

io
n

(e
sc

ap
e)

 p
ro

ba
bi

lit
y

Simulating percolation is different from random
walks because we have to store the barrier locations

grid = [[1, 0, 0, 1, 0, 1, 0],
[0, 1, 0, 0, 1, 0, 1],
[0, 0, 0, 1, 0, 0, 0],
[1, 0, 0, 0, 0, 0, 1],
[0, 0, 1, 0, 0, 0, 1],
[1, 0, 0, 0, 1, 0, 0],
[0, 1, 0, 1, 0, 1, 0]]

The 2D list object we saw previously is a good data
structure for storing the barrier locations

Our random walker will move around “inside” this grid

The first half of the program sets up the simulation
and builds a grid filled with barriers at a set density

from __future__ import division
from random import choice, random
density=0.5 #Should be a number between 0 and 1
side=21 #Should be an odd number
perc=0
trials=1000
maxtime=1000
steps = [(1,0),(-1,0),(0,1),(0,-1)]
for trial in range(trials):

count=0
for x in range(side):

for y in range(side):
grid[x][y]=0
if (random()<density):

count+=1
grid[x][y]=1

Open up the program perc.py inside idle

“Non Pythonic”

grid=[[0 if random() > density else 1 for x in range(side)] for y in range(side)]

The second half is similar to the random walk, but we
need to test for barriers and when the walker leaves

Start particle at center
x,y = int(side/2),int(side/2)
for time in range(maxtime):

Randomly move particle
sx,sy = choice(steps)
nx = x+sx
ny = y+sy
if new position is occupied try again
if grid[nx][ny]==1:

continue
if nx==0 or ny==0 or nx==(side-1) or ny==(side-1):

perc+=1
break

grid[x][y]=0 #Remove particle from current spot
grid[nx][ny]=1 #Put particle in new location
x=nx
y=ny

print "%4d %5.3f %5.3f"%(side,density,perc/trials)

Some additional Python learning resources
Posted to CatCourses:

• ThinkPython (book)
• Python_quick_reference
• Python_refcard
• Python2.7 Reference

Other WWW resources:
• http://www.codecademy.com/tracks/python
• http://www.afterhoursprogramming.com/tutorial/Python/Overview/
• http://www.stavros.io/tutorials/python/ (“Learn Python in 10 Minutes”)
• http://learnpython.org
• http://www.linuxtopia.org/online_books/programming_books/introduction_to_python/
• http://wiki.python.org/moin/BeginnersGuide

Python classes available at all online course sites:
• Edx
• Coursera
• Software carpentry
• Udacity
• Datacamp

If you want a more intensive programming introduction,
consider the Scientific Programming Workshop Sponsored

• Linux/Bash scripting
• Using remote compute servers
• R programming and data analysis
• Python programming
• C/C++ [Optional dep. on interest]

Topics:

Instructors: Mike Colvin and David Quint
Schedule: 8:30-12:30 for 10 days (June 4-15)
Location: UC Merced campus, SE1-100

Sponsored by the UC Merced Center
for Cellular and Biomolecular Machines

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27

