
ICGE Programming Module--Python!  
Part 2: Object-oriented programming in Python

What will your program need to include?
• Variables to store the properties of each component (cards, frogs, etc.)
• Logic and math to change these variables (deal card, move frog, etc.)
• Steps to initialize and print out the properties of each component

Imagine you want to simulate something:

What’s the best way to organize these different pieces?



“Object-oriented” programming organizes your 
program around the natural “objects” involved



“OO” programming is an intuitive & fun approach 
to designing many types of simulation programs

• Simplifies programming by hiding the details of each component of the program
• Improved reliability since each class can be independently debugged
• Improved code reuse and sharing since you only need to remember the class 

“interface” and don’t need to know the details of how the code is implemented

Promised advantages of OO programming

Situations where OO design may not be ideal:
• Performance is a top priority (relevant in OO C++)
• Many developers will be working on the program
• Few obvious “objects” in the task to be programmed



Let’s try out two simple classes that implement 
a deck of playing cards and an individual card

Deck object Card object
Create deck __init__() Create card __init__()
Shuffle deck shuffle() What type of card? type()
Look at whole deck printdeck() What suit? suit()
Deal a card dealcard() What is the card value? 

(depends on card game)
value()

How many cards left? cardsleft() Look at card printcard()



Start idle, then open and run the file cards.py

adeck=deck()
adeck.shuffle()
adeck.printdeck()
for i in range(15):
acard=adeck.dealcard()
print "acard:",acard.printcard()

print "# left:",adeck.cardsleft()
adeck.shuffle()
adeck.printdeck()
bdeck=deck()
bdeck.printdeck()

Create a deck object and try some of its functions:



Let’s use this card “class” to build a simple card 
game and determine players’ odds of winning
Rules: 1. Player A gets 2 cards & Player B gets 1 card

2. Player A wins the hand if either card has a 
greater value than Player B’s card

3. Play though entire deck and tally hands won

Hand 2:

Hand 1:
Player A Player B

A wins

B wins



from __future__ import division
from cards import *
ntrials=10000
awins=0
for i in range(ntrials):

adeck=deck()
adeck.shuffle()
ascore=0
bscore=0
while adeck.cardsleft()>2:

acard1=adeck.dealcard()
acard2=adeck.dealcard()
bcard=adeck.dealcard()
if acard1.value()>bcard.value() or acard2.value()>bcard.value():

ascore+=1
else:

bscore+=1
if ascore > bscore:

awins+=1
print("Player A win percentage=",awins/ntrials)

Here’s a program that plays 10000 trials of this 
game and prints the final win statistics
Enter the following and save in the same directory with the 
file cards.py



class deck:
def __init__(self):

self.deck=[]
suits=['S','C','H','D']
values={'A':1,'2':2,'3':3,'4':4,'5':5,'6':6,'7':7,'8':8,'9':

9,'10':10,'J':10,'Q':10,'K':10} 
types=['A','2','3','4','5','6','7','8','9','10','J','Q','K']

The card values are set in the deck class and 
can be changed by editing the numerical values

Player B wins when cards are equal, so giving more cards equal 
values will help this player.   Edit the cards.py file and make 
this change (save your changes before rerunning gameMC.py)
values={'A':1,'2':2,'3':3,'4':4,'5':5,'6':6,'7':7,'8':9,'9':9
,'10':10,'J':10,'Q':10,'K':10} 

The most balanced version of the program I could find gave 
Player A a 50.5% chance of winning—can you do better?

Load cards.py into idle and look for following lines:



Many simulations of physical processes involve 
vector operations in 3 dimensional space

In idle load and run: point3d.py
then try these commands:

For points (and many useful data types) there are good standard libraries:

NumPy: N-dimensional array “ndarray”
SciPy: More advanced linear algebra on ndarrays

A 3D point class can simplify codes involving spatial coordinates

a=point3d(2,3,5)

a.display()

a.sqmag()

b=point3d(5,6,7)

c=a+b

d=5*c

d.display()

d.dist(b)



class point:
def __init__(self, dim, data):

self.dim=dim
self.data=[]
for i in range(dim):

self.data.append(float(data[i]))
def display(self):

for i in self.data:
print i, 

print
def scale(self, x):

for i in range(self.dim):
self.data[i]*=x

def dot(self, a):
sum=0
for i in range(self.dim):

sum+=self.data[i]*a.data[i]
return sum

Let’s create a simple arbitrary dimensional point 
class with just a few functions (& no safety net)
Open window and enter the following class and save as point.py

This is the 
function that 
“constructs” new 
point objects:

p3=point(2,[3,2])

self is the prefix 
for data stored in 
an object



Test your multidimensional point class by writing 
a short program using the class functions

from point import *
p1=point(4, [1, 4, 5, 2])
p1.display()
p1.scale(3)
p1.display()
p2=point(4, [5, 1, 2, 3])
print "p1 dot p2=", p1.dot(p2)
p3=point(2, [3,2])
p3.display()
print "p3 dot p2=", p3.dot(p2)

float dot=0.;
for (int i=0; i<dim; i++) {

dot+=p1[i]*p2[i];
}

Be sure to save this in the same folder with point.py 

Same operation in a procedural 
code would require a few lines 
but may run much faster:

This is an “unsafe” class since it will try to execute bad operations 
(like the dot product between vectors of different length)

r1 = _mm_mul_ps(p1, p2); 
r2 = _mm_hadd_ps(r1, r1); 
r3 = _mm_hadd_ps(r2, r2); 
_mm_store_ss(&dot, r3);

Or much, much faster*  

*SSE calls for dim=4



“Ising models” are very simple spin lattices that 
undergo fairly realistic “phase transitions”  

6X6 Ising model



Function Function name and args, example of use
Create an ising model with a specified 
temperature, n (spins on one side) 

ising(temp, n)
ising1=ising(2.4, 10)

Print out the ising system to the screen printsys()
ising1.printsys()

Run a single trial (flip 1 spin) trial()
ising1.trial()

Run multiple trials (flip m spins) trials(m)
ising1.trials(100000)

Set the system temperature to a new value changeTemp(newtemp)
ising1.changeTemp(3.4)

Randomize the spins (equal prob up or down) randomize()
ising1.randomize()

Reset sums for calculation energy and 
magnetization statistics

resetprops()
ising1.resetprops()

Calculate energy and magnetization for current 
state of system and add to running sums

addprops()
ising1.addprops()

Calculate and print out system properties calcprops()
ising1.calcprops()

Functions in class library ising_class.py for 
running & analyzing 2-dimensional Ising models 



from ising_class import *
ising1=ising(2.3, 20)
ising1.printsys()
ising1.resetprops()
ising1.randomize()
ising1.trials(5000)
ising1.resetprops()
for i in range(50000):

ising1.trial()
ising1.addprops()

ising1.calcprops()
ising1.printsys()

The class library makes it easy to assemble 
Ising simulations where all details are hidden
Load into idle the program ising1.py

For a program that scans temperature to find 
melting temperature, see posted ising2.py

2.3000 -3.1472 0.0021 0.0175 0.0012

Numbers output by calcprops()

These diverge at the 
“melting” temperature



The Iterated Prisoner’s Dilemma (IPD) is a simple 
model for repeated business or social interactions

Player 1 Player 2 Player 1 
Total

Player 2 
Total

Cooperate Cooperate 2 2

Cooperate Cooperate 4 4

Cooperate Cooperate 6 6

Cooperate Defect 6 9

Player 1 Player 2 Player 1 
Total

Player 2 
Total

Cooperate Defect 0 3

Defect Defect 1 4

Defect Defect 2 5

Defect Defect 3 6

“Friendly” Transactions “Hostile” Transactions

Multiple players repeatedly have pairwise transactions, 
deciding to “Cooperate” or “Defect” each time:



Name Strategy

Always Cooperate Always cooperate

Always Defect Always defect

Tit for Tat Cooperate first, and then do what 
opponent did last time

Suspicious Tit for Tat Defect first, and then do what 
opponent did last time

Coin flip Defect or cooperate with equal 
probability

Biased Random Defect or cooperate with prob. 
biased by opponent’s history

Grudger Cooperate until opponent defects, 
then always defect

In the early 1980’s Robert Axelrod at Michigan 
ran a series of multi-player IPD “tournaments” 

Best 
deterministic 
strategy in 
Axelrod’s study

Examples of some simple IPD strategies



The IPD can be put in a simulation of Darwinian 
evolution where species fitness = average score

Generation=  8       Pop      Score     New Pop
defect:   0        0.0000       0

cooperate:  11       21.4295      11
tit_for_tat:  14       27.4481      14

coin_flip:   3        5.0558       2
biased_random:  17       33.1816      18

susp_tit_for_tat:   2        3.1673       1
grudger:  18       35.4279      19

Load & run: ipd.py
uses ipd_class.py



The evolutionary IPD simulation program ipd.py 
allows setting the initial populations 

### Strategies available ###
strats=[defect,cooperate,tit_for_tat,coin_flip,

biased_random,susp_tit_for_tat,grudger]

### Set list for the number of each strategy ###
Nactor_list=[5, 15, 20, 10, 10, 10, 10]

You set the initial composition of the environment on these lines:

You can  also 
add new 
strategies 
by adding 
new player 
classes

class waffler:
def __init__(self,Nactors,myid):

self.Nactors=Nactors
self.myid=myid
self.name="waffler"
self.responses=["Cooperate","Defect"]
self.next=1

def response(self, other):
self.next=(self.next+1)%2
return self.responses[self.next]

def inform(self, other, other_response):
return



s=sudoku()
s.makepuzzle(36)
s.display()
s.solve()
s.solved()
s.generate()

Example of OO encapsulation: Sudoku--a simple, 
but for many very addictive, numerical puzzle 

Create an empty 9x9 Sudoku grid

Fill in 36 number clues (or any # < 81)

Print out current Sudoku grid

Try to solve the puzzle (without using any guesses)

Is the puzzle completely solved?

Generate a completely solved Sudoku puzzle

Load and run sudoku_class.py

Goal:  Fill in digits 1-9 so 
that there are no 
repeated digits in any row, 
column or 3x3 sub-block

Program to calc. solve rate vs # clues: sudoku.py



Blackjack is a slightly more complex game where 
winning depends on the point value each hand 
Goal:  Get a set of cards totaling as close as 
possible to 21, without going over 21
Card values:

2, 3, 4, 5, 6, 7, 8, 10: Value of number
J, Q, K:  Count as 10
A: Count as 1 or 11



Rules of blackjack (simplified)
Players:  1 player and 1 dealer

• Deal two cards to player & dealer with one of the 
dealer’s cards face up

• Player goes first, requesting as many cards as he 
wants (“hits”)

• If player goes over 21, he “busts” and dealer wins
• If player doesn’t bust, dealer takes cards up to a 

cutoff of 17 or a bust
• Player & dealer compare scores; dealer wins in a tie

Rules:



Two sample hands of Blackjack

Player Busted ! Player wins !

DEALER

PLAYER



You can change the player’s strategy and 
use Monte Carlo to test effectiveness

• Player’s cutoff to take new card (recalling 
that dealer must “hold” at 17)

Things to change in strategy:

• How to use information 
about what cards the dealer 
is showing—Typically the 
higher the card the dealer is 
showing, more likely you will 
benefit by taking another 
card
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Program blackjack.py on CatCourses
is a Monte Carlo simulation of the game

Output:

The program plays 10000 games of blackjack 
following the specified player strategy

The player strategy can be modified by editing 
the holdlimit variable in the playerclass



You specify the player’s strategy in terms 
of the hold value under different conditions

Dealer’s 
exposed card

Player’s hold limit for 
that showing card

Code:  blackjack.py

Example:  hold limit of 17 in all cases

Example:  variable hold limit


