
ICGE Programming Module--Python!
Part 2: Object-oriented programming in Python

What will your program need to include?
• Variables to store the properties of each component (cards, frogs, etc.)
• Logic and math to change these variables (deal card, move frog, etc.)
• Steps to initialize and print out the properties of each component

Imagine you want to simulate something:

What’s the best way to organize these different pieces?

“Object-oriented” programming organizes your
program around the natural “objects” involved

“OO” programming is an intuitive & fun approach
to designing many types of simulation programs

• Simplifies programming by hiding the details of each component of the program
• Improved reliability since each class can be independently debugged
• Improved code reuse and sharing since you only need to remember the class

“interface” and don’t need to know the details of how the code is implemented

Promised advantages of OO programming

Situations where OO design may not be ideal:
• Performance is a top priority (relevant in OO C++)
• Many developers will be working on the program
• Few obvious “objects” in the task to be programmed

Let’s try out two simple classes that implement
a deck of playing cards and an individual card

Deck object Card object
Create deck __init__() Create card __init__()
Shuffle deck shuffle() What type of card? type()
Look at whole deck printdeck() What suit? suit()
Deal a card dealcard() What is the card value?

(depends on card game)
value()

How many cards left? cardsleft() Look at card printcard()

Start idle, then open and run the file cards.py

adeck=deck()
adeck.shuffle()
adeck.printdeck()
for i in range(15):
acard=adeck.dealcard()
print "acard:",acard.printcard()

print "# left:",adeck.cardsleft()
adeck.shuffle()
adeck.printdeck()
bdeck=deck()
bdeck.printdeck()

Create a deck object and try some of its functions:

Let’s use this card “class” to build a simple card
game and determine players’ odds of winning
Rules: 1. Player A gets 2 cards & Player B gets 1 card

2. Player A wins the hand if either card has a
greater value than Player B’s card

3. Play though entire deck and tally hands won

Hand 2:

Hand 1:
Player A Player B

A wins

B wins

from __future__ import division
from cards import *
ntrials=10000
awins=0
for i in range(ntrials):

adeck=deck()
adeck.shuffle()
ascore=0
bscore=0
while adeck.cardsleft()>2:

acard1=adeck.dealcard()
acard2=adeck.dealcard()
bcard=adeck.dealcard()
if acard1.value()>bcard.value() or acard2.value()>bcard.value():

ascore+=1
else:

bscore+=1
if ascore > bscore:

awins+=1
print("Player A win percentage=",awins/ntrials)

Here’s a program that plays 10000 trials of this
game and prints the final win statistics
Enter the following and save in the same directory with the
file cards.py

class deck:
def __init__(self):

self.deck=[]
suits=['S','C','H','D']
values={'A':1,'2':2,'3':3,'4':4,'5':5,'6':6,'7':7,'8':8,'9':

9,'10':10,'J':10,'Q':10,'K':10}
types=['A','2','3','4','5','6','7','8','9','10','J','Q','K']

The card values are set in the deck class and
can be changed by editing the numerical values

Player B wins when cards are equal, so giving more cards equal
values will help this player. Edit the cards.py file and make
this change (save your changes before rerunning gameMC.py)
values={'A':1,'2':2,'3':3,'4':4,'5':5,'6':6,'7':7,'8':9,'9':9
,'10':10,'J':10,'Q':10,'K':10}

The most balanced version of the program I could find gave
Player A a 50.5% chance of winning—can you do better?

Load cards.py into idle and look for following lines:

Many simulations of physical processes involve
vector operations in 3 dimensional space

In idle load and run: point3d.py
then try these commands:

For points (and many useful data types) there are good standard libraries:

NumPy: N-dimensional array “ndarray”
SciPy: More advanced linear algebra on ndarrays

A 3D point class can simplify codes involving spatial coordinates

a=point3d(2,3,5)

a.display()

a.sqmag()

b=point3d(5,6,7)

c=a+b

d=5*c

d.display()

d.dist(b)

class point:
def __init__(self, dim, data):

self.dim=dim
self.data=[]
for i in range(dim):

self.data.append(float(data[i]))
def display(self):

for i in self.data:
print i,

print
def scale(self, x):

for i in range(self.dim):
self.data[i]*=x

def dot(self, a):
sum=0
for i in range(self.dim):

sum+=self.data[i]*a.data[i]
return sum

Let’s create a simple arbitrary dimensional point
class with just a few functions (& no safety net)
Open window and enter the following class and save as point.py

This is the
function that
“constructs” new
point objects:

p3=point(2,[3,2])

self is the prefix
for data stored in
an object

Test your multidimensional point class by writing
a short program using the class functions

from point import *
p1=point(4, [1, 4, 5, 2])
p1.display()
p1.scale(3)
p1.display()
p2=point(4, [5, 1, 2, 3])
print "p1 dot p2=", p1.dot(p2)
p3=point(2, [3,2])
p3.display()
print "p3 dot p2=", p3.dot(p2)

float dot=0.;
for (int i=0; i<dim; i++) {

dot+=p1[i]*p2[i];
}

Be sure to save this in the same folder with point.py

Same operation in a procedural
code would require a few lines
but may run much faster:

This is an “unsafe” class since it will try to execute bad operations
(like the dot product between vectors of different length)

r1 = _mm_mul_ps(p1, p2);
r2 = _mm_hadd_ps(r1, r1);
r3 = _mm_hadd_ps(r2, r2);
_mm_store_ss(&dot, r3);

Or much, much faster*

*SSE calls for dim=4

“Ising models” are very simple spin lattices that
undergo fairly realistic “phase transitions”

6X6 Ising model

Function Function name and args, example of use
Create an ising model with a specified
temperature, n (spins on one side)

ising(temp, n)
ising1=ising(2.4, 10)

Print out the ising system to the screen printsys()
ising1.printsys()

Run a single trial (flip 1 spin) trial()
ising1.trial()

Run multiple trials (flip m spins) trials(m)
ising1.trials(100000)

Set the system temperature to a new value changeTemp(newtemp)
ising1.changeTemp(3.4)

Randomize the spins (equal prob up or down) randomize()
ising1.randomize()

Reset sums for calculation energy and
magnetization statistics

resetprops()
ising1.resetprops()

Calculate energy and magnetization for current
state of system and add to running sums

addprops()
ising1.addprops()

Calculate and print out system properties calcprops()
ising1.calcprops()

Functions in class library ising_class.py for
running & analyzing 2-dimensional Ising models

from ising_class import *
ising1=ising(2.3, 20)
ising1.printsys()
ising1.resetprops()
ising1.randomize()
ising1.trials(5000)
ising1.resetprops()
for i in range(50000):

ising1.trial()
ising1.addprops()

ising1.calcprops()
ising1.printsys()

The class library makes it easy to assemble
Ising simulations where all details are hidden
Load into idle the program ising1.py

For a program that scans temperature to find
melting temperature, see posted ising2.py

2.3000 -3.1472 0.0021 0.0175 0.0012

Numbers output by calcprops()

These diverge at the
“melting” temperature

The Iterated Prisoner’s Dilemma (IPD) is a simple
model for repeated business or social interactions

Player 1 Player 2 Player 1
Total

Player 2
Total

Cooperate Cooperate 2 2

Cooperate Cooperate 4 4

Cooperate Cooperate 6 6

Cooperate Defect 6 9

Player 1 Player 2 Player 1
Total

Player 2
Total

Cooperate Defect 0 3

Defect Defect 1 4

Defect Defect 2 5

Defect Defect 3 6

“Friendly” Transactions “Hostile” Transactions

Multiple players repeatedly have pairwise transactions,
deciding to “Cooperate” or “Defect” each time:

Name Strategy

Always Cooperate Always cooperate

Always Defect Always defect

Tit for Tat Cooperate first, and then do what
opponent did last time

Suspicious Tit for Tat Defect first, and then do what
opponent did last time

Coin flip Defect or cooperate with equal
probability

Biased Random Defect or cooperate with prob.
biased by opponent’s history

Grudger Cooperate until opponent defects,
then always defect

In the early 1980’s Robert Axelrod at Michigan
ran a series of multi-player IPD “tournaments”

Best
deterministic
strategy in
Axelrod’s study

Examples of some simple IPD strategies

The IPD can be put in a simulation of Darwinian
evolution where species fitness = average score

Generation= 8 Pop Score New Pop
defect: 0 0.0000 0

cooperate: 11 21.4295 11
tit_for_tat: 14 27.4481 14

coin_flip: 3 5.0558 2
biased_random: 17 33.1816 18

susp_tit_for_tat: 2 3.1673 1
grudger: 18 35.4279 19

Load & run: ipd.py
uses ipd_class.py

The evolutionary IPD simulation program ipd.py
allows setting the initial populations

Strategies available
strats=[defect,cooperate,tit_for_tat,coin_flip,

biased_random,susp_tit_for_tat,grudger]

Set list for the number of each strategy
Nactor_list=[5, 15, 20, 10, 10, 10, 10]

You set the initial composition of the environment on these lines:

You can also
add new
strategies
by adding
new player
classes

class waffler:
def __init__(self,Nactors,myid):

self.Nactors=Nactors
self.myid=myid
self.name="waffler"
self.responses=["Cooperate","Defect"]
self.next=1

def response(self, other):
self.next=(self.next+1)%2
return self.responses[self.next]

def inform(self, other, other_response):
return

s=sudoku()
s.makepuzzle(36)
s.display()
s.solve()
s.solved()
s.generate()

Example of OO encapsulation: Sudoku--a simple,
but for many very addictive, numerical puzzle

Create an empty 9x9 Sudoku grid

Fill in 36 number clues (or any # < 81)

Print out current Sudoku grid

Try to solve the puzzle (without using any guesses)

Is the puzzle completely solved?

Generate a completely solved Sudoku puzzle

Load and run sudoku_class.py

Goal: Fill in digits 1-9 so
that there are no
repeated digits in any row,
column or 3x3 sub-block

Program to calc. solve rate vs # clues: sudoku.py

Blackjack is a slightly more complex game where
winning depends on the point value each hand
Goal: Get a set of cards totaling as close as
possible to 21, without going over 21
Card values:

2, 3, 4, 5, 6, 7, 8, 10: Value of number
J, Q, K: Count as 10
A: Count as 1 or 11

Rules of blackjack (simplified)
Players: 1 player and 1 dealer

• Deal two cards to player & dealer with one of the
dealer’s cards face up

• Player goes first, requesting as many cards as he
wants (“hits”)

• If player goes over 21, he “busts” and dealer wins
• If player doesn’t bust, dealer takes cards up to a

cutoff of 17 or a bust
• Player & dealer compare scores; dealer wins in a tie

Rules:

Two sample hands of Blackjack

Player Busted ! Player wins !

DEALER

PLAYER

You can change the player’s strategy and
use Monte Carlo to test effectiveness

• Player’s cutoff to take new card (recalling
that dealer must “hold” at 17)

Things to change in strategy:

• How to use information
about what cards the dealer
is showing—Typically the
higher the card the dealer is
showing, more likely you will
benefit by taking another
card

ht
tp
:/
/w

w
w
.h
ito

rs
ta
nd

.n
et
/s
tr
at
eg
y.
ph

p

Program blackjack.py on CatCourses
is a Monte Carlo simulation of the game

Output:

The program plays 10000 games of blackjack
following the specified player strategy

The player strategy can be modified by editing
the holdlimit variable in the playerclass

You specify the player’s strategy in terms
of the hold value under different conditions

Dealer’s
exposed card

Player’s hold limit for
that showing card

Code: blackjack.py

Example: hold limit of 17 in all cases

Example: variable hold limit

