## A central question in all human endeavor:

## I've done something differently and I got different results... is this significant? Why is math necessary to answer this question?



## Answering this question involves distinguishing random variability from causal differences



Key idea - compare how the difference in values between treatments compare to the variation within a treatment group

## The kind of statistical model you build depends on the number and type of explanatory variables

## Continuous X

- Continuously varying
- Values have meaning as numbers
- Values are ordered
- Interpolation makes sense

Multiple Regression:

$$Y = \alpha + \beta_1 \times X_1 + \beta_2 \times X_2$$

## Categorical X

- Discrete values
- Values are just "names" that define subsets
- Values are unordered
- Interpolation is meaningless

Multiway analysis of variance:

$$Y = \mu + \begin{bmatrix} 0 \\ \alpha_1 \\ \alpha_2 \\ \alpha_3 \end{bmatrix} + \begin{bmatrix} 0 \\ \beta_1 \\ \beta_2 \end{bmatrix}$$

### A statistical model describes the relationship between a response variable and 1 or more explanatory variables

#### folate~ventilation

folate: measured levels of folate in red blood cells in post-op patients **ventilation**: methods of ventilation while under anesthesia (three types)

#### met.rate~weight

**met.rate**: resting metabolic rate (kcal/day) weight: body weight (kg)

#### Calories~Sodium+Type

**Calories**: calorie concentration in meat **Sodium**: sodium concentration **Type**: type of meat

#### cost~carat+color+clarity

diamond cost (\$ Singapore) cost: **carat**: diamond carat weight color: diamond color (D, E, F, ...) **clarity:** diamond clarity (FL, IF, VVS<sub>1</sub>, ...)

#### glucose~pregnant+diastolic+triceps+insulin+bmi+diabetes+age

glucose: 2-hr plasma glucose pregnant: Number of times pregnant diastolic: Diastolic blood pressure (mm Hg) triceps: Triceps skin fold thickness (mm)

insulin: 2-hr serum insulin (mu U/ml) **bmi**: Body mass index (weight in kg/(height in m)^2) **diabetes**: Diabetes pedigree function (family history) age: Age (years)

## All parametric statistical tests can be included in one framework called the General Linear Model

From the preface of the BIO180/QSB 280 text:



"[This approach] is based on a grand conceptual scheme, called the General Linear Model or GLM. This contains within it all the usual parametric tests, including t-tests, analysis of variance, contrast analysis, linear regression, multiple regression, analysis of covariance, and polynomial regression. *Instead of learning these as separate tests with broadly similar features but maddening differences, this book will teach you a single coherent framework. Instead of a mish-mash of eccentrically named accidents, this book presents statistics as a meaningful whole."* 

In R, the General Linear Model is performed using the lm() command

## GLM framework covers many statistical tests

#### Blue indicates categorical variable Red (italic) indicates continuous variable

| Traditional test        | Example                                                     | Model formula                                    |
|-------------------------|-------------------------------------------------------------|--------------------------------------------------|
| 2-sample <i>t</i> -test | Comparing yield of two types of fertilizer                  | <b>YIELD=FERTIL</b><br>("~" instead of "=" in R) |
| One way ANOVA           | Comparing yield of 3 or more types of fertilizer            | YIELD=FERTIL                                     |
| Blocked ANOVA           | Comparing yield of fertilizers in blocked experiment        | <b>YIELD</b> =BLOCK+FERTIL                       |
| Regression              | Predicting yield based on amount of water                   | YIELD=WATER                                      |
| Analysis of covariance  | Yield predicted from type of fertilizer and amount of water | YIELD=FERTIL+<br>WATER                           |
| Multiple<br>Regression  | Yield predicted from amount of water and sunlight           | YIELD=WATER+SUN                                  |
| Two way ANOVA           | Comparing yield of different fertilizers and seed brands    | YIELD=FERTIL+<br>SEEDBRAND                       |

## What do we get from our statistical models?

- A well-defined p-value to address your overall Null Hypothesis that the response variable is not affected by any of your explanatory variables
- 2. Well-defined p-values for the Null Hypotheses that each individual explanatory variable does not affect your response variable (after statistical elimination)
- 3. An R<sup>2</sup> value that tells you the fraction of variation in response explained by explanatory variables
- 4. Optimal fitted parameters for predicting responses from explanatory variables (i.e. your model parameters: slopes, offsets, etc.)

## To start using R, double click on the 🖳 icon

**Control menus** 

### GUI window (holds all R sub-windows)



### Build a GLM for the blood folate dataset with 1 categorical explanatory variable

Commands to type at R prompt:

```
redcell<-read.table("redcell.txt", header=T)
redcell</pre>
```

```
names(redcell)
```

plot(folate~ventilation, data=redcell)

model<-lm(folate~ventilation, data=redcell)
summary(model)</pre>

"Box and whiskers" plot:



# The model "summary" presents the key results from the general linear model

Call: lm(formula = folate ~ ventilation, data = redcell) Residuals: Min 10 Median 30 Max -73.625 -35.361 -4.444 35.625 75.375 Coefficients: Estimate Std. Error t value Pr(>|t|)16.16 19.588 4.65e-14 \*\*\* (Intercept) 316.62 ventilationN2O+O2,op -60.18 22.22 -2.709 0.0139 \* ventilation02,24h -38.62 26.06 - 1.482 0.1548Signif. codes: 0 `\*\*\*' 0.001 `\*\*' 0.01 `\*' 0.05 `.' 0.1 ` ' 1

Residual standard error: 45.72 on 19 degrees of freedom Multiple R-squared: 0.2809, Adjusted R-squared: 0.2052 F-statistic: 3.711 on 2 and 19 DF, p-value: 0.04359

## Build a GLM for the metabolic rate dataset with 1 continuous explanatory variable

```
Commands to type at R prompt:
    rmr<-read.table("rmr.txt", header=T)
    names(rmr)
    plot(met.rate~weight, data=rmr)
    model<-lm(met.rate~weight, data=rmr)
    abline(model)
    summary(model)
```



# The model summary presents the key results from the general linear model

lm(formula = met.rate ~ weight, data = rmr)

Residuals:

| Min       | 1Q     | Median | 3Q     | Max    |
|-----------|--------|--------|--------|--------|
| -245.74 - | 113.99 | -32.05 | 104.96 | 484.81 |

Coefficients:

Estimate Std. Error t value Pr(>|t|) (Intercept) 811.2267 76.9755 10.539 2.29e-13 \*\*\* weight 7.0595 0.9776 7.221 7.03e-09 \*\*\* ---Signif. codes: 0 `\*\*\*' 0.001 `\*\*' 0.01 `\*' 0.05 `.' 0.1 ` ' 1

Residual standard error: 157.9 on 42 degrees of freedom Multiple R-squared: 0.5539, Adjusted R-squared: 0.5433 F-statistic: 52.15 on 1 and 42 DF, p-value: 7.025e-09

The script model.R automates these steps and prints the statistical data to model.out & the graph to graph.png. This can be run from the file/Source R code... menu Next build a model for the meat dataset with 1 continuous & 1 categorical explanatory variable

Commands to type at R prompt:

```
cs<-read.table("cal_sodium.txt", header=T)
plot(Calories~Sodium, data=cs)
plot(Calories~Type, data=cs)
model<-lm(Calories~Sodium, data=cs)
summary(model)
model<-lm(Calories~Type, data=cs)
summary(model)
model<-lm(Calories~Sodium+Type, data=cs)
summary(model)
anova(model)</pre>
```

## Summary results for all three models

### Calories~Sodium

Multiple R-squared: 0.2182, Adjusted R-squared: 0.2032 F-statistic: 14.51 on 1 and 52 DF, p-value: 0.0003693

### Calories~Type

Multiple R-squared: 0.3866, Adjusted R-squared: 0.3626 F-statistic: 16.07 on 2 and 51 DF, p-value: 3.862e-06

### Calories~Sodium+Type

```
Multiple R-squared: 0.7934, Adjusted R-squared: 0.781
F-statistic: 64.01 on 3 and 50 DF, p-value: < 2.2e-16
```

```
Analysis of Variance Table
Response: Calories
Df Sum Sq Mean Sq F value Pr(>F)
Sodium 1 9985.5 9985.5 52.815 2.292e-09 ***
Type 2 26320.6 13160.3 69.607 3.551e-15 ***
Residuals 50 9453.2 189.1
```

### Build a model for diamond cost with 1 continuous and 2 categorical explanatory variables

```
diamond<-read.table("diamond.txt", header=T)
names(diamond)
model<-lm(cost~carat+color+clarity, data=diamond)
summary(model)
anova(model)</pre>
```

Multiple R-squared: 0.958, Adjusted R-squared: 0.9565 F-statistic: 676.7 on 10 and 297 DF, p-value: < 2.2e-16

Analysis of Variance Table

Dognongo, dogt

| response. | COBL | -          |            |          |   |                  |       |
|-----------|------|------------|------------|----------|---|------------------|-------|
|           | Df   | Sum Sq     | Mean Sq    | F value  |   | <b>Pr(&gt;F)</b> |       |
| carat     | 1    | 1350730005 | 1350730005 | 6304.435 | < | 2.2e-16          | * * * |
| color     | 5    | 60591911   | 12118382   | 56.562   | < | 2.2e-16          | * * * |
| clarity   | 4    | 38450149   | 9612537    | 44.866   | < | 2.2e-16          | * * * |
| Residuals | 297  | 63632471   | 214251     |          |   |                  |       |

## Are all three explanatory variables essential to get a good model for diamond cost?

summary(lm(cost~carat+color, data=diamond))
summary(lm(cost~carat+clarity, data=diamond))
Etc.

| Variables           | R <sup>2</sup> |
|---------------------|----------------|
| carat+color+clarity | 0.958          |
| carat+color         | 0.933          |
| carat+clarity       | 0.910          |
| color+clarity       | 0.114          |
| carat               | 0.893          |
| color               | 0.084          |
| clarity             | 0.030          |

### Finally, a model with 7 explanatory variables

diabetes <- read.table("diabetes.txt",header=T)
model<-lm(glucose~.,data=diabetes)
summary(model)
anova(model)</pre>

Multiple R-squared: 0.4012, Adjusted R-squared: 0.3903 F-statistic: 36.76 on 7 and 384 DF, p-value: < 2.2e-16Analysis of Variance Table Response: glucose Df Sum Sq Mean Sq F value Pr(>F) 14642 25.2158 7.864e-07 \*\*\* 1 14642 pregnant diastolic 1 10975 10975 18.9004 1.766e-05 \*\*\* triceps 1 8067 8067 13.8933 0.0002226 \*\*\* insulin 1 107840 107840 185.7190 < 2.2e-16 \*\*\* 0.2183 0.6406234 bmi 127 127 1 diabetes 1202 2.0706 0.1509758 1 1202 1 6556 6556 11.2901 0.0008573 \*\*\* age

How can we select the minimal # of expl. vars?

# There are a number of automated methods to help in multiple regression

### Possible pitfalls:

- 1. Temptation just to let the computer do the thinking and neglect other relevant information related to the model
- 2. Slightly different automated procedures can give different models (although usually with similar significance)
- 3. Don't take overall p-value of final model too literally, due to multiplicity of pvalue issues. (To be *really* conservative, you can divide  $p_{sig}$  by  $2^{(n explanatory vars)}$ )

Number of possible subsets of n explanatory variables



## Stepwise regression is an automated procedure for selecting a subset of variables in model

### **Backwards Stepwise Regression**

Example: Model for Y vs. five explanatory variables: X1, X2, X3, X4, X5

Step 1: Build full model and remove variable that contributes least (by some measure)

Step 2: Build new model and remove variable that contributes least



Stop when all remaining variables fulfill some criterion

Conversely, there is forward stepwise regression

# Stepwise regression can also be run in the forward direction

### Forwards Stepwise Regression

Example: Model for Y vs. five explanatory variables: X1, X2, X3, X4, X5



### Backward stepwise regression on diabetes data

```
model<-lm(glucose~.,data=diabetes)</pre>
model2 <- step(model)</pre>
summary(model2)
Step: AIC=2498.07
glucose ~ diastolic + insulin + diabetes + age
          Df Sum of Sq
                         RSS
                               AIC
- diabetes
           1 1071 224845 2497.9
<none>
                       223773 2498.1
- diastolic 1 3434 227207 2502.0
- age 1 12396 236169 2517.2
- insulin 1 94915 318688 2634.7
Step: AIC=2497.95
glucose ~ diastolic + insulin + age
          Df Sum of Sq
                         RSS
                               AIC
                       224845 2497.9
<none>
                                                  7 variable model
- diastolic 1 3258 228103 2501.6
       1 12964 237809 2517.9
                                                     0.3903
- age
- insulin 1 98886 323731 2638.8
```

### Forward stepwise regression on diabetes data

```
model<-lm(glucose~1,data=diabetes)</pre>
```

```
step(model,direction="forward",
```

```
scope=list(upper=terms(glucose~.,data=diabetes)))
```

```
Step: AIC=2501.59
glucose ~ insulin + age
           Df Sum of Sq
                          RSS
                                 ATC
+ diastolic 1 3258.3 224845 2497.9
       1 2104.8 225998 2499.9
+ bmi
+ triceps 1 1591.2 226512 2500.8
                       228103 2501.6
<none>
+ diabetes 1 896.0 227207 2502.0
+ pregnant 1 1.0 228102 2503.6
Step: AIC=2497.95
                                     Same result we got from
glucose ~ insulin + age + diastolic <
                                     backward stepwise regression
          Df Sum of Sq
                         RSS
                                AIC
                      224845 2497.9
<none>
+ diabetes 1 1071.35 223773 2498.1
      1 916.49 223928 2498.3
+ bmi
+ triceps 1
             873.04 223972 2498.4
                  0.00 224845 2499.9
+ pregnant 1
```